Bagos PG, Nikolopoulos GK. Generalized
least squares for assessing trends in cumulative meta-analysis with
applications in genetic epidemiology. 2009, Journal of Clinical Epidemiology, 62 (10): 1037-1044 (Impact
Factor: 2.956, citations: 1)
1.
Kulinskaya, E. and Koricheva, J. (2010), Use of quality control charts for detection of outliers and temporal
trends in cumulative meta-analysis. Research
Synthesis Methods, 1: n/a. doi: 10.1002/jrsm.29
Bagos PG, Nikolopoulos GK. Mixed-effects Poisson regression models
for meta-analysis of follow-up studies with constant or varying durations.
2009, The International Journal of Biostatistics, 5(1), Article 21. (Impact
Factor: -, citations: 1)
2.
James J. Sejvar, Andrew L. Baughman, Matthew Wise, Oliver W. Morgan. Population Incidence of Guillain-Barré
Syndrome: A Systematic Review and Meta-Analysis. Neuroepidemiology 2011;36:123-133
Dimou NL, Nikolopoulos GK,
Hamodrakas SJ, Bagos PG. Fcgamma
receptor polymorphisms and their association with periodontal disease: A
meta-analysis. 2010 Journal of
Clinical Periodontology, 37(3):255-65 (Impact
Factor: 3.549, citations: 3)
3.
Yokoyama T, Kobayashi T, Yamamoto K, Yamagata A, Oofusa K, Yoshie H. Proteomic profiling of human neutrophils
in relation to immunoglobulin G Fc receptor IIIb polymorphism. J
Periodontal Res. 2010 Jul 6. [Epub ahead of print]
4.
Zhuang Y, Xu W, Shen Y, Li J. Fcγ
receptor polymorphisms and clinical efficacy of rituximab in non-Hodgkin
lymphoma and chronic lymphocytic leukemia. Clin Lymphoma Myeloma Leuk. 2010 Oct;10(5):347-52
5.
Deng H, Liu F, Pan Y, Jin X, Wang H, Cao J. BsmI, TaqI, ApaI, and FokI polymorphisms in the vitamin D receptor
gene and periodontitis: a meta-analysis of 15 studies including 1338 cases
and 1302 controls. J Clin
Periodontol. 2011 Mar;38(3):199-207. doi:
10.1111/j.1600-051X.2010.01685.x. Epub 2010 Dec 27.
Ioannidis A, Ikonomi E, Dimou NL, Douma L, Bagos
PG. Polymorphisms of Insulin Receptor (INSR)
and Insulin Receptor Substrate-1 (IRS-1) genes and their association with
Polycystic Ovary Syndrome: a mendelian randomization meta-analysis. 2010, Molecular Genetics and Metabolism, 99(2):174–183 (Impact
Factor: 2.897, citations: 5)
6.
Mukherjee, S.,
Maitra, A. Molecular & genetic
factors contributing to insulin resistance in polycystic ovary syndrome 2010.
Indian Journal of Medical Research
131 (6), pp. 743-760
7.
Whitaker KN: Polycystic Ovary Syndrome: An Overview. Journal
of Pharmacy Practice . 2010
8.
Baranova A, Tran TP, Birerdinc A, Younossi ZM: Systematic review:
association of polycystic ovary syndrome with metabolic syndrome and
non-alcoholic fatty liver disease. Alimentary Pharmacology &
Therapeutics 2011
9.
Goodarzi MO, Louwers YV, Taylor KD, Jones MR, Cui J, Kwon S, Chen YD,
Guo X, Stolk L, Uitterlinden AG, Laven JS, Azziz R. Replication of association of a novel insulin receptor gene
polymorphism with polycystic ovary syndrome. Fertil Steril. 2011 Apr;95(5):1736-1741.e11.
10.
Baranova A, Tran TP, Birerdinc A, Younossi ZM. Systematic review: association of polycystic ovary syndrome with
metabolic syndrome and non-alcoholic fatty liver disease.Aliment Pharmacol Ther. 2011
Apr;33(7):801-14. doi: 10.1111/j.1365-2036.2011.04579.x. Epub 2011 Jan 20.
Bonovas S, Nikolopoulos GK, Filioussi K, Peponi
E, Bagos PG, Sitaras NM. Can statin therapy reduce
the risk of melanoma? A meta-analysis of randomized controlled trials. European Journal of Epidemiology,
2010;25(1):29-35 (Impact
Factor: 3.718, citations: 3)
11.
Hippisley-Cox,
J., Coupland, C. Unintended effects of
statins in men and women in England
and Wales:
Population based cohort study using the QResearch database .BMJ 340 (7758), pp. 1232
12.
Julia
Hippisley-Cox, Unintended effects of
statins in men and women in England
and Wales:
population based cohort study using the QResearch database. BMJ. 2010; 340: c2197
13.
Thomas MALFAIT. RhoC in melanoma: possible target for
statin treatment. MSc Thesis,
2010, Universiteit Gent
Bagos PG, Tsirigos KD, Liakopoulos TD, Hamodrakas SJ. Prediction of lipoprotein signal peptides in Gram-positive bacteria
with Hidden Markov Models, 2008, J
Proteome Research, 7(12):5082-93. (Impact Factor:
5.684, citations: 4)
14.
Giombini E,
Orsini M, Carrabino D, Tramontano A An
automatic method for identifying surface proteins in bacteria: SLEP BMC Bioinformatics 2010, 11:39
15.
Goudenège, D., Avner, S., Lucchetti-Miganeh, C., Barloy-Hubler, F. CoBaltDB: Complete bacterial and archaeal
orfeomes subcellular localization database and associated resources. 2010
BMC Microbiology 10, art. no. 88
16.
Thompson BJ, Widdick DA, Hicks MG, Chandra G, Sutcliffe IC, Palmer T,
Hutchings MI. Investigating lipoprotein biogenesis and
function in the model Gram-positive bacterium Streptomyces coelicolor. Mol Microbiol. 2010 Jun 21. [Epub
ahead of print]
17.
Stefanie Storf, Friedhelm Pfeiffer, Kieran Dilks, Zhong Qiang Chen,
Saheed Imam, and Mechthild Pohlschröder. Mutational
and Bioinformatic Analysis of
Haloarchaeal Lipobox-Containing Proteins. Archaea Volume 2010 (2010), Article ID 410975, 11 pages doi:10.1155/2010/410975
Bagos PG, Tsirigos KD, Plessas SK, Liakopoulos TD, Hamodrakas SJ. Prediction of signal peptides in Archaea,
Protein Engineering Design and
Selection, 2009, 22(1): 27-35 (Impact Factor: 2.787, citations: 12)
18.
Ng, S.Y.M.,
VanDyke, D.J., Chaban, B., Wu, J., Nosaka, Y., Aizawa, S.-I., Jarrell, K.F. Different minimal signal peptide lengths
recognized by the archaeal prepilin-like peptidases FlaK and PibD 2009 Journal of Bacteriology 191 (21), pp.
6732-6740
19.
Choo KH, Tan TW, Ranganathan S.
A comprehensive assessment of N-terminal signal peptides prediction methods.
BMC Bioinformatics 2009, 10(Suppl
15):S2
20.
Ellen, A.F., Albers, S.-V., Driessen, A.J.M. Comparative study of the extracellular proteome of Sulfolobus species
reveals limited secretion 2009 Extremophiles
14 (1), pp. 87-98
21.
Magidovich H, Yurist-Doutsch S, Konrad Z, Ventura VV, Dell A, Hitchen
PG, Eichler J. AglP is a
S-adenosyl-L-methionine-dependent methyltransferase that participates in the
N-glycosylation pathway of Haloferax volcanii. Mol Microbiol. 2010
22.
KS Auernik , RM Kelly. Impact of Molecular Hydrogen on
Chalcopyrite Bioleaching by the Extremely Thermoacidophilic Archaeon
Metallosphaera sedula. Appl.
Environ. Microbiol. 2010, doi:10.1128/AEM.02016-09
23.
Goudenège, D., Avner, S., Lucchetti-Miganeh, C., Barloy-Hubler, F. CoBaltDB: Complete bacterial and archaeal
orfeomes subcellular localization database and associated resources. 2010
BMC Microbiology 10, art. no. 88
24.
Albert F. Ellen, Behnam Zolghadr, Arnold J M Driessen, and Sonja
Verena Albers Shaping the archaeal
cell envelope. Archaea, 2010,
in press
25.
Quax, T.E.F., KrupoviČ, M., Lucas, S., Forterre, P., Prangishvili, D. The Sulfolobus rod-shaped virus 2 encodes
a prominent structural component of the unique virion release system in
Archaea 2010 Virology 404 (1),
pp. 1-4
26.
Łabaj, P.P., Leparc, G.G., Bardet, A.F., Kreil, G., Kreil, D.P. Single
amino acid repeats in signal peptides 2010 , FEBS Journal 277 (15), pp. 3147-3157
27.
Du X, Zhang SW. Prediction of
signal peptide cleavage sites with template matching fusion algorithm. Signal
Processing (ICSP), 2010 IEEE 10th International Conference on Date:24-28 Oct.
2010 pp 1801 – 1804
28.
Ting-ting Liu Proteomic analysis of the exoproteome of the thermophilic archaeon
Sulfolobus acidocaldarius DSM 639. Graduate Institute of Systems
Biology and Bioinformatics. MSc Thesis, 2009
29.
Petra Worm, Alfons J. M. Stams,
Xu Cheng and Caroline M. Plugge. Growth-
and substrate-dependent transcription of formate dehydrogenase and
hydrogenase coding genes in Syntrophobacter fumaroxidans and Methanospirillum
hungatei. Microbiology 157
(2011), 280-289 ; DOI
10.1099/mic.0.043927-0
Bagos PG. Plasminogen Activator Inhibitor-1
4G/5G and 5,10-methylene-tetrahydrofolate reductase C677T polymorphisms in Polycystic
Ovary Syndrome. 2009, Molecular
Human Reproduction, 15(1):19-26
(Impact
Factor: 2.537, citations: 1)
30.
Bohler H Jr,
Mokshagundam S, Winters SJ. Adipose
tissue and reproduction in women. Fertil
Steril. 2009
Bagos PG. A unification of multivariate
methods for meta-analysis of genetic association studies. Statistical Applications in Genetics and
Molecular Biology, 2008, 7(1),
Article 13 (Impact
Factor: 1.773, citations: 4)
31.
Li H, Ha TC, Tai BC. XRCC1 gene polymorphisms and breast
cancer risk in different populations: a meta-analysis. Breast.
2009; 18(3):183-91.
32.
Andreas Ziegler, Inke R.
König, Friedrich Pahlke. A Statistical Approach to
Genetic Epidemiology: Concepts and Applications.Wiley-Blackwell, 2010
33.
Pereira TV, Patsopoulos NA,
Pereira AC, Krieger JE. Strategies for genetic
model specification in the screening of genome-wide meta-analysis signals for
further replication. International Journal of
Epidemiology, 2010
34.
Madden LV,
Paul PA: Meta-Analysis for Evidence Synthesis in Plant Pathology: An
Overview. Phytopathology 2011, 101:16-30.
Litou ZI, Bagos PG,
Tsirigos KD, Liakopoulos TD, Hamodrakas SJ. Prediction of Cell Wall
sorting signals in Gram-positive bacteria with a Hidden Markov Model:
application to complete genomes. Journal of Bioinformatics
and Computational Biology, 2008 6(2):387-401. (Impact Factor:-, citations:1)
35.
Mariscotti JF, García-del Portillo F, Pucciarelli MG. The
Listeria monocytogenes sortase-B recognizes varied amino acids at position 2
of the sorting motif. J Biol Chem. 2009; 284(10):6140-6.
36.
Goudenège, D., Avner, S., Lucchetti-Miganeh, C., Barloy-Hubler, F. CoBaltDB: Complete bacterial and archaeal
orfeomes subcellular localization database and associated resources. 2010
BMC Microbiology 10, art. no. 88
Theodoropoulou
MC, Bagos PG, Spyropoulos IC, Hamodrakas SJ. gpDB: a database of G-proteins, GPCRs, Effectors and their
interactions. Bioinformatics. 2008, 24(12):1471-2. (Impact Factor:
4.328, citations: 7)
37.
Harmar AJ, Hills
RA, Rosser EM, Jones M, Buneman OP, Dunbar DR, Greenhill SD, Hale VA, Sharman
JL, Bonner TI, Catterall WA, Davenport AP, Delagrange P, Dollery CT, Foord
SM, Gutman GA, Laudet V, Neubig RR, Ohlstein EH, Olsen RW, Peters J, Pin JP,
Ruffolo RR, Searls DB, Wright MW, Spedding M. IUPHAR-DB: the IUPHAR database of G protein-coupled receptors and ion
channels. Nucleic Acids Res.
2009 Jan;37(Database issue):D680-5.
38.
R. Prasobh and
Narayanan Manoj. The Repertoire of
Heterotrimeric G Proteins and RGS Proteins in Ciona intestinalis. PLoS
One. 2009; 4(10): e7349.
39.
Lisa M Simpson,
Bruck Taddese, Ian D Wall and Christopher A Reynolds. Bioinformatics and molecular modelling approaches to GPCR
oligomerization. Current Opinion in
Pharmacology Volume 10, Issue 1, February 2010, Pages 30-37
40.
Khelashvili G,
Dorff K, Shan J, Camacho-Artacho M, Skrabanek L, Vroling B, Bouvier M, Devi
LA, George SR, Javitch JA, Lohse MJ, Milligan G, Neubig RR, Palczewski K,
Parmentier M, Pin JP, Vriend G, Campagne F, Filizola M. GPCR-OKB: the G Protein Coupled Receptor Oligomer Knowledge Base.
Bioinformatics. 2010 Jul
15;26(14):1804-5
41.
Chen XP, Yang W,
Fan Y, Luo JS, Hong K, Wang Z, Yan JF, Chen X, Lu JX, Benovic JL, Zhou NM. Structural determinants in the second
intracellular loop of the human cannabinoid CB(1) receptor mediate selective
coupling to G(s) and G(i). Br J
Pharmacol. 2010 Aug 23. [Epub ahead of print]
42.
Yukimitsu Yabuki,
Masami Ikeda, Yuri Mukai-Ikeda and Yoshihisa Ishida. Development of Prediction Method for GPCRG-protein Coupling
Selectivity Using Amino Acid Properties. The Open Structural Biology
Journal, 2009, 3, 149-158
43.
XP Chen, W Yang,
Y Fan, JS Luo, K Hong, Z Wang, JF Yan, X Chen, JX Lu, JL Benovic, M Zhou Structural determinants in the second
intracellular loop of the human cannabinoid CB1 receptor mediate selective
coupling to Gs and Gi British Journal of Pharmacology Volume 161, Issue
8, pages 1817–1834, December 2010
Nikolopoulos
GK, Dimou NL, Hamodrakas SJ, Bagos PG. Cytokine gene polymorphisms in periodontal disease: A meta-analysis
of 53 studies including 4178 cases and 4590 controls. Journal of Clinical Periodontology,
2008,35(9):754-67 (Impact Factor: 3.193,
citations: 19)
44.
Noack B, Görgens
H, Lorenz K, Ziegler A, Hoffmann T, Schackert HK. TLR4 and IL-18 gene variants in aggressive periodontitis. J Clin
Periodontol. 2008;35(12):1020-6
45.
Néstor J. López, Carlos Y. Valenzuela, and Lilian Jara. Interleukin-1 Gene Cluster Polymorphisms
Associated with Periodontal Disease in Type 2 Diabetes. Journal of
Periodontology, Posted online on July 7,
2009
46.
Shao MY, Huang P, Cheng R, Hu T. Interleukin-6
polymorphisms modify the risk of periodontitis: a systematic review and
meta-analysis. J Zhejiang
Univ Sci B. 2009;10(12):920-7.
47.
Raunio T. GENE POLYMORPHISM AND SYSTEMIC INFLAMMATORY
RESPONSE IN CHRONIC PERIODONTITIS. Ph.D. Thesis. 2009, FACULTY OF MEDICINE, INSTITUTE
OF DENTISTRY, DEPARTMENT OF PERIODONTOLOGY AND GERIATRIC DENTISTRY, INSTITUTE
OF DIAGNOSTICS, DEPARTMENT OF MEDICAL MICROBIOLOGY,UNIVERSITY OF OULUISBN
978-951-42-9235-4 OULU UNIVERSITY PRESS
48.
Shaqman MH, Periodontitis,
Inflammatory Markers and Solid Organ Transplant Recipients. 2009, M.Sc.
Thesis, University
of Connecticut
49.
Rafał Płoski, Zofia T. Bilińska. Dilated
cardiomyopathy in the postgenomic era. Kardiol Pol 2009; 67:
1248-1249
50.
Manish Arora, Jennifer Weuve, Katja Fall, Nancy L. Pedersen and
Lorelei A. Mucci. An Exploration of
Shared Genetic Risk Factors Between Periodontal Disease and Cancers: A
Prospective Co-Twin Study. American Journal of Epidemiology 2010
171(2):253-259; doi:10.1093/aje/kwp340
51.
Alexandrina L. Dumitrescu and Junya Kobayashi. Genetic Variability and Periodontal Disease. In Dumitrescu A.L. (Ed)
Etiology and Pathogenesis of Periodontal Disease. Springer Berlin Heidelberg,
2009
52.
Marja L. Laine,, Bruno G.
Loos, W. Crielaard. Gene polymorphisms in
chronic periodontitis International Journal of Dentistry, 2009
53.
AhmadReza Ebadian, Mehrdad Radvar, HamidReza Arab Jalil
TavakkolAfshari, Naser Sargolzaei,
Salman Gharegozloo, Azam Brook, Mojhgan Shirkhani. Analysis of Proinflammatory Cytokines Gene Polymorphisms in
Generalized Aggressive Periodontitis (GAgP) J Mash Dent Sch 2009; 33(3):
231-40.
54.
Stabholz A, Soskolne
WA, Shapira L. Genetic and environmental risk factors
for chronic periodontitis and aggressive periodontitis. Periodontol
2000. 2010;53:138-53..
55.
Cota LO, Viana MB, Moreira
PR, Gomez RS, Cortelli JR, Cortelli SC, Costa FO. Gingival
overgrowth in cyclosporine, tacrolimus, or sirolimus-based immunosuppressive
regimens and the single nucleotide IL-6 (-174 G/C) gene polymorphism. Arch Oral Biol.
2010 Apr 27
56.
Lazenby, M.G., Crook, M.A., The
innate immune system and diabetes mellitus: The relevance of periodontitis?
A hypothesis 2010 , Clinical
Science 119 (10), pp. 423-429
57.
Ladhani, S.N., Davila, S., Hibberd, M.L., Heath, P.T., Ramsay, M.E.,
Slack, M.P.E., Pollard, A.J., Booy, R., Association
between single-nucleotide polymorphisms in Mal/TIRAP and interleukin-10 genes
and susceptibility to invasive Haemophilus influenzae serotype b infection in
immunized children 2010, Clinical Infectious Diseases 51 (7), pp.
761-767
58.
Deng H, Liu F, Pan Y, Jin X, Wang H, Cao J: BsmI, TaqI, ApaI, and
FokI polymorphisms in the vitamin D receptor gene and periodontitis: a
meta-analysis of 15 studies including 1338 cases and 1302 controls. Journal
of Clinical Periodontology 2011, 38:199-207.
59.
Stashenko P, Van Dyke T, Tully P, Kent R, Sonis S, Tanner AC: Inflammation
and Genetic Risk Indicators for Early Periodontitis in Adults. Journal
of Periodontology 2010:1-10.
60.
Mizuno N, Niitani M, Shiba H, Iwata T, Hayashi I, Kawaguchi H,
Kurihara H: Proteome analysis of proteins related to aggressive
periodontitis combined with neutrophil chemotaxis dysfunction. Journal
of Clinical Periodontology 2011:no-no.
61.
Acir Jose Dirschnabel,Fabiano Alvim-Pereira,Claudia Cristina
Alvim-Pereira,Jose Fabio Bernardino,Edvaldo Antonio Ribeiro Rosa,Paula
Cristina Trevilatto. Analysis of the
association of IL1B(C-511T) polymorphism with dental implant loss and the
clusterization phenomenon. Clinical Oral Implants Research, 2011
62.
Miguel Angel MUNOZ, Rafael BAGGIO, Joao Paulo STEFFENS, Fabio Andre SANTOS, Gibson Luiz
PILATTI. Genetic and immunological features
of aggressive periodontitis. Rev Sul-Bras Odontol. 2010
Mar;7(1):90-4
Tsantes
AE, Nikolopoulos GK, Bagos PG, Bonovas S, Kopterides P, Vaiopoulos G. The effect of the plasminogen activator
inhibitor-1 4G/5G polymorphism on the thrombotic risk. Thromb Res. 2008 (Impact Factor: 2.449,
citations: 12)
63.
Sanna V,
Zarrilli F, Nardiello P, D'Argenio V, Rocino A, Coppola A, Di Minno G,
Castaldo G. Mutational spectrum of F8
gene and prothrombotic gene variants in haemophilia A patients from Southern
Italy. Haemophilia. 2008
64.
Ramón LA,
Gilabert-Estellés J, Cosín R, Gilabert J, España F, Castelló R, Chirivella M,
Romeu A, Estellés A. Plasminogen
activator inhibitor-1 (PAI-1) 4G/5G polymorphism and endometriosis. Influence
of PAI-1 polymorphism on PAI-1 antigen and mRNA expression. Thromb
Res. 2008
65.
Gialeraki, A.,
Politou, M., Rallidis, L., Merkouri, E., Markatos, C., Kremastinos, D.,
Travlou, A. Prevalence of
prothrombotic polymorphisms in Greece, 2008, Genetic Testing 12 (4), pp. 541-547
66.
Marina Turello, Samantha Pasca, Roberto Daminato,
Patrizia Dello Russo, Roberta Giacomello2 Ugo Venturelli and Giovanni
Barillari. Retinal vein occlusion: evaluation of “classic” and
“emerging” risk factors and treatment.
Journal of Thrombosis and Thrombolysis.
2009. in press
67.
Kupesiz OA, Chitlur MB,
Hollon W, Tosun O, Thomas R, Warrier I, Lusher JM, Rajpurkar M. Fibrinolytic parameters in children with
noncatheter thrombosis: a pilot study. Blood Coagul Fibrinolysis. 2010 Jun;21(4):313-9.
68.
Zateyshchikov
DA, Brovkin AN, Chistiakov DA, Nosikov VV. Advanced age, low left atrial appendage velocity, and Factor V
promoter sequence variation as predictors of left atrial thrombosis in
patients with nonvalvular atrial fibrillation. J Thromb Thrombolysis.
2010 Aug;30(2):192-9.
69.
Katrancioglu N, Manduz
S, Ozen F, Yilmaz MB, Karahan O, Ozdemir O, Berkan O. Type I Plasminogen Activator Inhibitor 4G Allele Frequency is
Associated with Chronic Venous Insufficiency. J Int Med Res. 2010 Jul-Aug;38(4):1513-8.
70.
Lenicek Krleza
J, Jakovljevic G, Bronic A, Coen Herak D, Bonevski A, Stepan-Giljevic J, Roic
G. Contraception-related deep venous
thrombosis and pulmonary embolism in a 17-Year-old girl heterozygous for
factor V leiden, prothrombin G20210A mutation, MTHFR C677T and homozygous for
PAI-1 mutation: report of a family with multiple genetic risk factors and
review of the literature. Pathophysiol
Haemost Thromb. 2010;37(1):24-9. Epub 2010 Jul 20.
71.
Saratzis A,
Abbas A, Kiskinis D, Melas N, Saratzis N, Kitas GD. Abdominal Aortic Aneurysm: A Review of the Genetic Basis. Angiology. 2010 Jun 21. [Epub ahead of
print]
72.
Nurkay
Katrancioğlu, Şinasi Manduz, Oğuz Karahan, Ahmet Turhan Kılıç, Öcal Berkan. The myocardial infarction in a young
woman with heterozygous MTHRF and PAI-1 gene mutations. Cumhuriyet Medical Journal (CMJ), Vol
32, No 2 (2010)
73.
Zainullina A.
G., Khusnutdinova E. K The Role of fibrinolytic system genes in
the development of gestosis. Molecular
Medicine №5 2010
74.
Roman M.
Sniecinski,, Marcie J Hursting,
Michael J. Paidas and Jerrold H. Levy, Etiology and Assessment of
Hypercoagulability with Lessons from Heparin-Induced Thrombocytopenia. Anesthesia
& Analgesia, January 2011 vol. 112 no. 1 46-58
Bagos PG, Elefsinioti AL,
Nikolopoulos GK, Hamodrakas SJ. The
GNB3 C825T polymorphism and Essential Hypertension: a meta-analysis of 34
studies including 14094 cases and 17760 controls, 2007, Journal of
Hypertension, 25(3):487-500 (Impact
Factor: 5.132, citations: 22)
75.
Chunyu Zhang,
Shigang Zhao, Guangming Niu, Rile Hu, Zhiguang Wang, Mingfang Jiang, Rile Hu.
Genetic predisposition to essential
hypertension in a Mongolian population: Detecting the C825T polymorphism of
the G-protein beta 3 subunit gene. Nerve
Regeneration Research,2007,2(3):146-150
76.
Deng AY. Genetic basis of polygenic hypertension.
Hum Mol
Genet. 2007;16 Spec No. 2:R195-202.
77.
Lahiry P, Pollex
RL, Hegele RA. Uncloaking the Genetic
Determinants of Metabolic Syndrome. J
Nutrigenet Nutrigenomics 2008;1:118–125
78.
Haga SB, Burke
W. Pharmacogenetic testing: not as
simple as it seems. Genet Med.
2008;10(6):391-5.
79.
Peters BJ, Maitland-van der Zee AH, Stricker BH, van
Wieren-de Wijer DB, de Boer A, Kroon AA, de Leeuw PW, Schiffers P, Janssen
RG, van Duijn CM, Klungel OH. Effectiveness of statins in the reduction of the risk
of myocardial infarction is modified by the GNB3 C825T variant. Pharmacogenet
Genomics. 2008;18(7):631-636.
80.
Daimon, M., Sato, H., Sasaki, S., Toriyama, S., Emi,
M., Muramatsu, M., Hunt, S.C., et al. Salt consumption-dependent association
of the GNB3 gene polymorphism with type 2 DM Biochemical and Biophysical Research
Communications 374 (3), pp. 576-580: 2008
81.
Welsh P, Packard
CJ, Sattar N. Novel antecedent plasma biomarkers of cardiovascular
disease: improved evaluation methods and comparator benchmarks raise the bar.
Curr Opin Lipidol. 2008;19(6):563-71.
82.
Rosskopf D,
Michel MC. Pharmacogenomics of G protein-coupled receptor ligands in
cardiovascular medicine. Pharmacol Rev. 2008; 60(4):513-35
83.
Bizios, Anna
Serletis; Sheldon, Robert S.Vasovagal syncope: state or trait? Current
Opinion in Cardiology. 2009, 24(1):68-73
84.
Bamidele O.
Tayo; Amy Luke; Xiaofeng Zhu; Adebowale Adeyemo and Richard S. Cooper. Association
of Regions on Chromosomes 6 and 7 with Blood Pressure in Nigerian Families.
Circulation, 2009, in press
85.
Sun C, Wang JJ,
Islam FM, Heckbert SR, Klein R, Siscovick DS, Klein BE, Wong TY. Hypertension
genes and retinal vascular calibre: the Cardiovascular Health Study. J Hum Hypertens. 2009 Jan 15. [Epub
ahead of print]
86.
Minushkina LO, Brazhnik VA,
Nosikov VV, Sidorenko BA, Zateĭshchikov DA Association of genetic factors with clinical peculiarities of
hypertensive disease in patients with burdened familial anamnesis. Kardiologiia. 2009;49(2):38-46
87.
Dorr M, Rosskopf
D, Hentschel K. beta-Blocker Therapy
and Heart Rate Control During Exercise Testing in the General Population:
Role of a Common G Protein beta 3 Subunit Variant BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY 104 (6):
500-500 JUN 2009
88.
Vasileios F.
Panoulas; Jacqueline P. Smith; Antonios Stavropoulos-Kalinoglou; Karen M. J. Douglas; Peter Nightingale; George D. Kitas Lack of an Association of GNB3 C825T
Polymorphism and Blood Pressure in Patients with Rheumatoid Arthritis Clinical and Experimental Hypertension,
1525-6006, Volume 31, Issue 5, 2009, Pages 428 – 439
89.
Chistiakov DA,
Spitsina EV, Nikitin AG, Strokov
IA, Nosikov VV. A splice variant of GNB3 and peripheral
polyneuropathy in type 1 diabetes. Dis
Markers. 2009;26(3):111-7.
90.
Kelly, T.N.,
Rice, T.K., Gu, D., Hixson, J.E., Chen, J., Liu, D., Jaquish, C.E., (...),
He, J. Novel genetic variants in the
α-adducin and guanine nucleotide binding protein β-polypeptide 3 genes and
salt sensitivity of blood pressure 2009 American Journal of Hypertension 22 (9), pp. 985-992
91.
Dai-Hai Yu,
De-Pei Liu, Lai-Yuan Wang, Jing Chen, Cashell E. Jaquish, Dabeeru C. Rao,
James E. Hixson, Jian-Feng Huang, Chung-Shiuan Chen, Charles Gu, Ji-Chun
Chen, Jie Cao, Shu-Feng Chen, Paul K. Whelton, Jiang He, Dong-Feng Gu and
GenSalt Collaborative Research Group. Genetic
variants in the ADD1 and GNB3 genes and blood pressure response to potassium
supplementation. Frontiers of
Medicine in China.
Volume 4, Number 1 / March, 2010
92.
Gómez-Gallego F,
Ruiz JR, Buxens A, Altmäe S, Artieda M, Santiago C, González-Freire M, Verde
Z, Arteta D, Martínez A, Tejedor D, Lao JI, Arenas J, Lucia A. Are elite endurance athletes genetically
predisposed to lower disease risk? Physiol
Genomics. 2010 Mar 3;41(1):82-90.
93.
Holmen OL,
Romundstad S, Melien O. Association
between the G protein β3 subunit C825T polymorphism and the occurrence of
cardiovascular disease in hypertensives: The Nord-Trøndelag Health Study
(HUNT). Am J Hypertens. 2010
Oct;23(10):1121-7.
94.
Marques FZ,
Campain AE, Yang YH, Morris BJ. Meta-analysis
of genome-wide gene expression differences in onset and maintenance phases of
genetic hypertension. Hypertension.
2010 Aug;56(2):319-24. Epub 2010 Jun 28.
95.
Dörr M, Schmidt
CO, Spielhagen T, Bornhorst A, Hentschel K, Franz C, Empen K, Kocher T, Diehl
SR, Kroemer HK, Völzke H, Ewert R, Felix SB, Rosskopf D. β-blocker therapy and heart rate control during exercise testing in
the general population: role of a common G-protein β-3 subunit variant. Pharmacogenomics. 2010
Sep;11(9):1209-21.
96.
Hoop, J.G.,
Lapid, M.I., Paulson, R.M., Roberts, L.W. Clinical and ethical considerations in pharmacogenetic testing: Views
of physicians in 3 "early adopting" departments of psychiatry
2010 Journal of Clinical Psychiatry
71 (6), pp. 745-753
Tsantes AΕ,
Nikolopoulos GΚ, Bagos PG, Tsiara C, Travlou A, Vaiopoulos G. Plasminogen
Activator Inhibitor-1 4G/5G Polymorphism and Risk of Ischemic Stroke: a
Meta-Analysis. 2007, Blood Coagulation & Fibrinolysis, 18 (5):497-504 (Impact Factor: 1.398,
citations: 11)
97.
Marlien Pieters, Hester H. Vorster. Nutrition
and hemostasis: A focus on urbanization in South Africa. Molecular
Nutrition & Food Research. 2007
98.
Claes Ladenvall.
GENETIC ASSOCIATION STUDIES IN STROKE.
PhD Thesis, Institute
of Neuroscience and Physiology, the Sahlgrenska Academy
at Göteborg University,
Göteborg, Sweden
99.
Stanković S, Majkić-Singh
N. Advances in the genetic basis of
ischemic stroke. 2008; Journal of
Medical Biochemistry 27
(2),123-134
100.
Zorio, E.,
Gilabert-Estellés, J., España, F.,
Ramón, L.A.,
Cosín, R., Estellés, A. Fibrinolysis: The key to new pathogenic
mechanisms. 2008; Current Medicinal
Chemistry 15 (9), 923-929
101.
Heil, J.W.,
Malinowski, L., Rinderknecht, A., Broderick, J.P., Franz, D. Use of intravenous tissue plasminogen
activator in a 16-year-old patient with basilar occlusion. 2008, Journal of
Child Neurology 23 (9), pp.
1049-1053
102.
Asselbergs FW,
Pattin K, Snieder H, Hillege HL, van Gilst WH, Moore JH. Genetic
architecture of tissue-type plasminogen activator and plasminogen activator
inhibitor-1. Semin Thromb Hemost. 2008;34(6):562-8.
103.
Titlic M,
Karaman K, Andelinovic S. Anterior
ischemic optic neuropathy comorbid with Factor V Leiden and PAI-1 4G/5G mutation. Bratis Lek Listy, 2009, 110 (3):
192-194
104.
Matarin M, Brown
WM, Dena H, Britton A, De Vrieze FW, Brott TG, Brown RD Jr, Worrall BB, Case
LD, Chanock SJ, Metter EJ, Ferruci L, Gamble D, Hardy JA, Rich SS, Singleton
A, Meschia JF. Candidate gene
polymorphisms for ischemic stroke. Stroke.
2009 Nov;40(11):3436-42.
105.
Zateyshchikov
DA, Brovkin AN, Chistiakov DA, Nosikov VV.. Advanced age, low left atrial appendage velocity, and Factor V
promoter sequence variation as predictors of left atrial thrombosis in
patients with nonvalvular atrial fibrillation. J Thromb Thrombolysis. 2010 Jan 16. [Epub ahead of print]
106.
Bentley P, Peck
G, Smeeth L, Whittaker J, Sharma P. Causal
relationship of susceptibility genes to ischemic stroke: comparison to
ischemic heart disease and biochemical determinants. PLoS One. 2010 Feb 9;5(2):e9136.
107.
M.Yu. Gilyarov,
E.B. Generozov, M.U. Magomadova, S.Yu. Moroshkina, T.V. Pogoda, P.A. Kostin,
V.A. Sulimov, A.L. Syrkin HEREDITARY
THROMBOPHILIAS AND THEIR INFLUENCE ON THE RISK OF STROKE IN PATIENTS WITH
ATRIAL FIBRILLATION. J.
Echocardiography (Russian) 2009, 56: 26-30
Tsantes AΕ,
Nikolopoulos GΚ, Bagos PG, Rapti E, Mantzios G, Kapsimali V, Travlou A. Association between the Plasminogen
Activator Inhibitor-1 4G/5G Polymorphism and
Venous Thrombosis: a Meta-Analysis. 2007, Thrombosis and Haemostasis, 97 (6): 907-13 (Impact
Factor: 3.803, citations: 31)
108.
HOU Xu-hui, DU Jian-shi, YIN Wei-tian. Transfect
PAI siRNA into human aorta smooth muscle cells. Chinese
Journal of Laboratory Diagnosis. 2007: 11(10)1993-1295
109.
Schenk JF,
Stephan B, Zewinger S, Speer T, Pindur G. Comparison of the plasminogen activator inhibitor-1 4G/5G gene
polymorphism in females with venous thromboembolism during pregnancy or
spontaneous abortion. Clin
Hemorheol Microcirc. 2008; 39(1-4):329-32.
110.
Picchi, A.,
Pasqualini, P., D'Aiello, I., Cortese, B., Micheli, A., Limbruno, U. Acute ST-elevation myocardial infarction
in a 15-year-old boy with celiac disease and multifactorial thrombotic risk.
2008; Thrombosis and Haemostasis 99 (6), 1116-1118
111.
Roux, A.,
Sanchez, O., Meyer, G. Which
thrombophilia tests for patients suffering from venous thromboembolism
disease? 2008; Reanimation 17 (4), 355-362
112.
Sanna V,
Zarrilli F, Nardiello P, D'Argenio V, Rocino A, Coppola A, Di Minno G,
Castaldo G. Mutational spectrum of F8
gene and prothrombotic gene variants in haemophilia A patients from Southern
Italy. Haemophilia. 2008
113.
Seidel H. Significance of polymorphisms for
arterial or venous thromboembolic risk. Predictive use of frequently
determined polymorphisms GP Ia C807T, GP IIIa T1565C, PAI-1 675 4G/5G, and
MTHFR C677T. MEDIZINISCHE GENETIK 20 (2): 223-229, 2008
114.
Asselbergs,
F.W., Pattin, K., Snieder, H., Hillege, H.L., Van Gilst, W.H., Moore, J.H. Genetic
architecture of tissue-type plasminogen activator and plasminogen activator
inhibitor-1 2008 Seminars in Thrombosis and Hemostasis 34
(6), pp. 562-568
115.
Varga, E.A.,
Kerlin, B.A., Wurster, M.W. Social and ethical controversies in
thrombophilia testing and update on genetic risk factors for venous
thromboembolism 2008 Seminars
in Thrombosis and Hemostasis 34 (6), pp. 549-561
116.
Tsakiris, D.A.,
Tichelli, A. Thrombotic complications
after haematopoietic stem cell transplantation: early and late effects,
2009, Best Practice and Research:
Clinical Haematology 22 (1), pp. 137-145
117.
Tukiainen E,
Kylänpää ML, Repo H, Orpana A, Methuen T, Salaspuro M, Kemppainen E,
Puolakkainen P. Hemostatic gene
polymorphisms in severe acute pancreatitis. Pancreas. 2009 Mar;38(2):e43-6.
118.
Mario D’Amico,
Linda Pasta and Piero Sammarco. MTHFR
C677TT, PAI1 4G-4G, V Leiden
Q506, and prothrombin G20210A in hepatocellular carcinoma with and without
portal vein thrombosis. Journal of
Thrombosis and Thrombolysis 10.1007/s11239-008-0246-6
119.
Titlic M,
Karaman K, Andelinovic S. Anterior
ischemic optic neuropathy comorbid with Factor V Leiden and PAI-1 4G/5G mutation. Bratis Lek Listy, 2009, 110 (3):
192-194
120.
Bedencic M,
Bozic M, Peternel P, Stegnar M. Major
and Potential Prothrombotic Genotypes in Patients with Venous Thrombosis and
in Healthy Subjects from Slovenia.
Pathophysiol Haemos Thromb
2007/2008;36:58-63 (DOI: 10.1159/000173722)
121.
Ringwald J, Berger A, Adler W, Kraus C, Pitto RP. Genetic polymorphisms in venous
thrombosis and pulmonary embolism after total hip arthroplasty: a pilot
study. Clin Orthop Relat Res. 2009 ;467(6):1507-15.
122.
Reverter, J.C.,
Tàssies, M.D. Genetic Aspects of the
Antiphospholipid Syndrome: Association with Clinical Manifestations 2009 Handbook of Systemic Autoimmune Diseases
10, pp. 91-103
123.
Zirlik, A.,
Ernst, S., Leugers, A., Willecke, F., Sobel, B.E., Bode, C., Nordt, T.K. Inhibition by fibrates of plasminogen
activator inhibitor type-1 expression in human adipocytes and preadipocytes
2009 Thrombosis and Haemostasis 101
(6), pp. 1060-1069
124.
Ma Z, Paek D, Oh CK. Plasminogen activator inhibitor-1 and
asthma: role in the pathogenesis and molecular regulation CLINICAL AND
EXPERIMENTAL ALLERGY 39 (8): 1136-1144 AUG 2009
125.
Kanjaksha Ghosh,
Shrimati Shettya and Sonal Voraa. Plasminogen
activator inhibitor-1 4G/5G gene polymorphism in women with fetal loss. International Journal of Gynecology &
Obstetrics, 2009
126.
Dolors Tàssiesa,
Merce Roqué, Joan Monteagudo, Teresa Martorell, Alessandro Sionis, Dabit
Arzamendi, Magda Herasb and Joan-Carles Reverter. Thrombin-activatable fibrinolysis inhibitor genetic polymorphisms as
markers of the type of acute coronary syndrome. Thrombosis Research Volume 124, Issue 5, November 2009, Pages
614-618
127.
Li, Y., Bezemer,
I.D., Rowland, C.M., Tong, C.H., Arellano, A.R., Catanese, J.J., Devlin,
J.J., (...), Rosendaal, F.R. Genetic
variants associated with deep vein thrombosis: The F11 locus 2009 Journal of Thrombosis and Haemostasis
7 (11), pp. 1802-1808
128.
Castro-Marrero,
J., Balada, E., Vilardell-Tarrés, M.,
Ordi-Ros, J. Genetic risk factors of thrombosis in the antiphospholipid
syndrome 2009 British Journal of
Haematology 147 (3), pp. 289-296
129.
Krummenacher R,
Lukas PS, Biasiutti FD, Begré S, Znoj H, Von Känel R. Independent association of sleep quality, fatigue, and vital
exhaustion with platelet count in patients with a previous venous
thromboembolic event. Platelets.
2009 Dec;20(8):566-74.
130.
Hoekstra J,
Guimarães AH, Leebeek FW, Darwish Murad S, Malfliet JJ, Plessier A,
Hernandez-Guerra M, Langlet P, Elias E, Trebicka J, Primignani M,
Garcia-Pagan JC, Valla DC, Rijken DC, Janssen HL; European Network for
Vascular Disorders of the Liver (EN-Vie). Impaired fibrinolysis as a risk factor for Budd-Chiari syndrome. Blood. 2010 Jan 14;115(2):388-95. Epub
2009 Nov 18.
131.
Morange, P.-E.,
Tregouet, D.-A Deciphering the
molecular basis of venous thromboembolism: Where are we and where should we
go? 2010 British
Journal of Haematology 148 (4), pp. 495-506
132.
Lee MH, Hammad
SM, Semler AJ, Luttrell LM, Lopes-Virella MF, Klein RL. HDL3, but not HDL2, stimulates plasminogen activator inhibitor-1
release from adipocytes: the role of sphingosine-1-phosphate. J Lipid Res. 2010 Sep;51(9):2619-28.
Epub 2010 Jun 3.
133.
Lenicek Krleza
J, Jakovljevic G, Bronic A, Coen Herak D, Bonevski A, Stepan-Giljevic J, Roic
G. Contraception-related deep venous
thrombosis and pulmonary embolism in a 17-Year-old girl heterozygous for
factor V leiden, prothrombin G20210A mutation, MTHFR C677T and homozygous for
PAI-1 mutation: report of a family with multiple genetic risk factors and
review of the literature. Pathophysiol
Haemost Thromb. 2010;37(1):24-9. Epub 2010 Jul 20.
134.
Katrancioglu N,
Manduz S, Ozen F, Yilmaz MB, Karahan O, Ozdemir O, Berkan O. Type I Plasminogen Activator Inhibitor 4G
Allele Frequency is Associated with Chronic Venous Insufficiency. J Int Med Res. 2010 Jul-Aug;38(4):1513-8.
135.
Zateyshchikov DA, Brovkin AN, Chistiakov DA, Nosikov
VV. Advanced age, low left atrial
appendage velocity, and Factor V promoter sequence variation as predictors of
left atrial thrombosis in patients with nonvalvular atrial fibrillation. J Thromb Thrombolysis. 2010 Aug;30(2):192-9.
136.
Bern, M.M., McCarthy, N.
Failure to lyse venous thrombi
because of elevated plasminogen activator inhibitor 1 (PAI-1) and 4G
polymorphism of its promotor genome (The PAI-1/4G syndrome) 2010, Clinical and Applied Thrombosis/Hemostasis
16 (5), pp. 574-578
137.
Alfirevic, Z.,
Simundic, A.-M., Nikolac, N., Sobocan, N., Alfirevic, I., Stefanovic, M.,
Vucicevic, Z., Topic, E. Frequency of
factor II G20210A, factor V Leiden, MTHFR C677T and PAI-15G/4G polymorphism
in patients with venous thromboembolism: Croatian case-control study 2010 Biochemia Medica 20 (2), pp. 229-235
138.
Manduz, S.,
Katrancioglu, N., Karahan, O., Ozdemir, O. Association of the plasminogen activator
inhibitor-1(PAI-1) gene 4G/5G promoter polymorphism in Buerger's disease
(Tromboangiitis obliterans) 2010 Health 2 (5), pp. 454-457
Bagos PG, Karnaouri AC,
Nikolopoulos GK, Hamodrakas SJ. No
evidence for association of CTLA-4 gene polymorphisms with the risk of
developing Multiple Sclerosis: a meta-analysis. 2007, Multiple
Sclerosis, 13(2): 156-168 (Impact Factor: 3.312,
citations: 11)
139.
Stuart R,
Lovett-Racke AE, Frohman EM, Hawker K, Racke MK.. Genetic analysis of the exon 1 position 49 CD152 dimorphism in
multiple sclerosis. J Neuroimmunol. 2007; 191(1-2):45-50.
140.
Luszczek W,
Majorczyk E, Nockowski P, Pluciński P, Jasek M, Nowak I, Wiśniewski A,
Kuśnierczyk P. Distribution of the
CTLA-4 single nucleotide polymorphisms CT60G>A and +49A>G in psoriasis
vulgaris patients and control individuals from a Polish Caucasian population.
Int J Immunogenet. 2007
141.
Svejgaard A. The immunogenetics of multiple sclerosis.
Immunogenetics. 2008
142.
Bye L, Modi N,
Stanford MR, Kondeatis E, Vaughan R, Fortune F, Kanawati C, Ben-Chetrit E,
Ghabra M, Murray PI, Wallace GR. CTLA-4
polymorphisms are not associated with ocular inflammatory disease. Tissue Antigens. 2008; 72(1):49-53.
143.
Palacios R, Comas D, Elorza J, Villoslada P. Genomic regulation of CTLA4 and Multiple
Sclerosis. J Neuroimmunol. 2008
144.
Kleinschnitz C, Meuth SG, Wiendl PH. The trials and errors in MS therapy. Int MS J. 2008;15(3):79-90
145.
M.R. Noori-Daloii, A. Heidari, M. Keramati-Pour,
A.Rashidi-Nezhad, and A.A. Amirzargar. Lack
of Association between Promoter Gene Polymorphism (-318 C/T) and Multiple
Sclerosis in Iranian Population. Journal
of Sciences (Islamic Republic
of Iran) 19(1):
15-17 (2008)
146.
Wang, J.-J.,
Jiang, L.-Q., He, B., Shi, K.-L., Li, J.-W., Zou, L.-P. The association of CTLA-4 and CD28 gene polymorphisms with idiopathic
ischemic stroke in the paediatric population 2009 International Journal of Immunogenetics 36 (2), pp. 113-118
147.
Holmoy T, Harbo
H, Vartdal F, Spurkland A. Genetic and Molecular Approaches to the
Immunopathogenesis of Multiple Sclerosis: An Update. CURRENT MOLECULAR MEDICINE 9 (5): 591-611 JUN 2009
148.
Lidia Karabon, Agata Kosmaczewska, Malgorzata Bilinska, Edyta Pawlak, Lidia Ciszak, Anna Jedynak, Anna Jonkisz, Leszek Noga, Anna
Pokryszko-Dragan, Magdalena
Koszewicz and Irena Frydecka. The CTLA-4 gene polymorphisms are
associated with CTLA-4 protein expression levels in multiple sclerosis
patients and with susceptibility to disease. Immunology.Volume
128 Issue 1pt2, Pages e787 - e796
149.
Evsyukova, I., Somarelli, J.A., Gregory, S.G.,
Garcia-Blanco, M.A. Alternative
splicing in multiple sclerosis and other autoimmune diseases 2010, RNA Biology 7 (4), pp. 462-473
Bagos PG,
Nikolopoulos GK. A method for meta-analysis of case-control genetic
association studies using logistic regression. 2007, Statistical Applications in Genetics and Molecular Biology, 6(1): Article 17 (Impact Factor: 1.773, citations: 13)
150.
Curtin K, Wong J, Allen-Brady K, Camp NJ. PedGenie:
meta genetic association testing in mixed family and case-control designs.
BMC
Bioinformatics. 2007;8:448.
151.
Kauffman MA,
Moron DG, Consalvo D, Bello R, Kochen S. Association
study between interleukin 1 beta gene and epileptic disorders: a HuGe review
and meta-analysis. Genet Med.
2008; 10(2):83-8.
152.
Schunkert H,
Götz A, Braund P, McGinnis R, Tregouet DA, Mangino M, Linsel-Nitschke P,
Cambien F, Hengstenberg C, Stark K, Blankenberg S, Tiret L, Ducimetiere P,
Keniry A, Ghori MJ, Schreiber S, El Mokhtari NE, Hall AS, Dixon RJ, Goodall
AH, Liptau H, Pollard H, Schwarz DF, Hothorn LA, Wichmann HE, König IR,
Fischer M, Meisinger C, Ouwehand W, Deloukas P, Thompson JR, Erdmann J,
Ziegler A, Samani NJ; Cardiogenics Consortium. Repeated replication and a prospective meta-analysis of the
association between chromosome 9p21.3 and coronary artery disease. Circulation. 2008; 117(13):1675-84
153.
Linsel-Nitschke
P, Götz A, Erdmann J, Braenne I, Braund P, Hengstenberg C, Stark K, Fischer
M, Schreiber S, El Mokhtari NE, Schaefer A, Schrezenmeier J, Rubin D, Hinney
A, Reinehr T, Roth C, Ortlepp J, Hanrath P, Hall AS, Mangino M, Lieb W,
Lamina C, Heid IM, Doering A, Gieger C, Peters A, Meitinger T, Wichmann HE,
König IR, Ziegler A, Kronenberg F, Samani NJ, Schunkert H; Wellcome Trust
Case Control Consortium (WTCCC); Cardiogenics Consortium. Lifelong reduction of LDL-cholesterol
related to a common variant in the LDL-receptor gene decreases the risk of
coronary artery disease--a Mendelian Randomisation study. PLoS ONE. 2008; 3(8):e2986
154.
Thum YM, Ahn S. Challenges
of Meta-Analysis from the Standpoint of a Latent Variable Framework: A New
Approach for Synthesizing the Results from Several Multiple Regressions.
Technical Report. College of
Education, Michigan
State University, 2008
155.
Ludwig A.
Hothorn, Torsten Hothorn. Order-restricted
Scores Test for the Evaluation of Population-based Case-control Studies when
the Genetic Model is Unknown. Biometrical
Journal, 2009, in press
156.
Li H, Ha TC, Tai BC. XRCC1 gene polymorphisms and breast
cancer risk in different populations: a meta-analysis. Breast.
2009; 18(3):183-91.
157.
Bai J, Dai J, Yu
H, Shen H, Chen F. Cigarette smoking,
MDM2 SNP309, gene-environment interactions, and lung cancer risk: a
meta-analysis. J Toxicol Environ
Health A. 2009;72(11):677-82.
158.
Andreas Ziegler, Inke R.
König, Friedrich Pahlke. A Statistical Approach to
Genetic Epidemiology: Concepts and Applications.Wiley-Blackwell, 2010
159.
Alexis Elbaz, Owen A. Ross. John P.A. Ioannidis. Alexandra I Soto-Ortolaza, Frédéric Moisan, Jan
Aasly, Grazia Annesi, Maria Bozi, Laura Brighina, Marie-Christine
Chartier-Harlin, Alain Destée, Carlo Ferrarese, Alessandro Ferraris, J. Mark
Gibson, Suzana Gispert, Georgios M. Hadjigeorgiou, Barbara Jasinska-Myga,
Christine Klein, Rejko Krüger MD, Jean-Charles Lambert, Katja Lohmann, Simone
van de Loo, Marie-Anne Loriot Pharm, Timothy Lynch, George D. Mellick,
Eugénie Mutez, Christer Nilsson, Grzegorz Opala,. Andreas Puschmann, Aldo
Quattrone, Manu Sharma, Peter A. Silburn, Leonidas Stefanis,. Ryan J. Uitti,
Enza Maria Valente,. Carles Vilariño-Güell,. Karin Wirdefeldt,. Zbigniew K.
Wszolek, Georgia Xiromerisiou, Demetrius M. Maraganore, Matthew J. Farrer. Independent and joint effects of the MAPT
and SNCA genes in parkinson's disease. Annals of Neurology, 2010
160.
Pereira TV, Patsopoulos NA,
Pereira AC, Krieger JE. Strategies for genetic
model specification in the screening of genome-wide meta-analysis signals for
further replication. International Journal of
Epidemiology, 2010
161.
Tu Y, Cui G, Xu Y, Bao X, Wang X, Wang D: Genetic polymorphism of
CYP11B2 gene and stroke in the Han Chinese population and a meta-analysis.
Pharmacogenetics and Genomics 2011, 21:115-120.
162.
Baumgartner C, Osl M, Netzer M,
Baumgartner D: Bioinformatic-driven search for metabolic biomarkers in
disease. J Clin Bioinformatics 2011, 1:2.
Nikolopoulos GΚ, Tsantes AΕ, Bagos PG, Travlou
A, Vaiopoulos G. Integrin, alpha 2 gene C807T Polymorphism and Risk of
Ischemic Stroke: a Meta-Analysis. 2007, Thrombosis Research; 119 (4): 501-510 (Impact Factor: 2.449, citations: 19)
163.
van Rijn MJE, Dissecting the Genetics of Stroke, PhD Thesis, Erasmus Universiteit
Rotterdam, 2007
164.
Stanković S, Majkić-Singh
N. Advances in the genetic basis of
ischemic stroke. 2008; Journal of
Medical Biochemistry 27
(2),123-134
165.
Bersano A,
Ballabio E, Bresolin N, Candelise L. Genetic
polymorphisms for the study of multifactorial stroke. Hum Mutat. 2008;29(6):776-95
166.
Vanessa Roldán,
Francisco Marín, Rocío González-Conejero, Antonio García-Honrubia, Silvia
Martí, Aranzazu Alfaro, Mariano Valdés, Javier Corral, Gregory Y. H. Lip,
Vicente Vicente. Factor VII -323
decanucleotide D/I polymorphism in atrial fibrillation: Implications for the
prothrombotic state and stroke risk. Annals
of Medicine, 2008
167.
Seidel H. Significance of polymorphisms for
arterial or venous thromboembolic risk. Predictive use of frequently
determined polymorphisms GP Ia C807T, GP IIIa T1565C, PAI-1 675 4G/5G, and
MTHFR C677T. MEDIZINISCHE GENETIK 20 (2): 223-229, 2008
168.
Feher, G.,
Feher, A., Pusch, G., Lupkovics, G., Szapary, L., Papp, E. The genetics of
antiplatelet drug resistance 2009 Clinical Genetics 75 (1), pp.
1-18
169.
Kvasnička, J.,
Hájková, J., Bobčíková, P., Dušková, D., Poletínová, Š., Kieferová, V.,
Zenáhlíková, Z., Pecen, L. Platelet
gene polymorphisms related to atherothrombogenesis and their frequencies in
the healthy middle-aged Czech population 2009 Cor et Vasa 51 (3), pp. 187-193
170.
Yumiko
Matsubara, Mitsuru Murata and Yasuo Ikeda. Polymorphisms of Platelet Membrane Glycoproteins. In: Recent Advances in Thrombosis and
Hemostasis 2008
171.
Alberts MJ. Stroke genomics. In Cardiovascular Genetics and Genomics,
(Ed) Dan M. Roden. 2009
172.
Khan Y, Faraday
N, Herzog W, Shuldiner AR. Genetic
determinants of arterial thrombosis. In Cardiovascular Genetics and Genomics, (Ed) Dan M. Roden. 2009
173.
Gerald Bertrand,
Vincent Jallu, Dominique Saillant, Dominique Kervran, Corinne Martageix, and Cecile Kaplan. The new platelet alloantigen Caba: a single point
mutation Gln716His on the α2 integrin. Transfusion,
2009, Volume 49 Issue 10, Pages 2076 – 2083
174.
Matarin M, Brown
WM, Dena H, Britton A, De Vrieze FW, Brott TG, Brown RD Jr, Worrall BB, Case
LD, Chanock SJ, Metter EJ, Ferruci L, Gamble D, Hardy JA, Rich SS, Singleton
A, Meschia JF. Candidate gene
polymorphisms for ischemic stroke. Stroke.
2009 Nov;40(11):3436-42.
175.
R Coppo, J
Feehally Is progression of IgA
nephropathy conditioned by genes regulating atherosclerotic damage?
Nephrology
Dialysis Transplantation, 2009.
176.
Matarin, M.,
Singleton, A., Hardy, J., Meschia, J. The
genetics of ischaemic stroke.2010, Journal
of Internal Medicine 267 (2), pp. 139-155
177.
Nissinen, L.,
Pentikäinen, O.T., Jouppila, A., Käpylä, J., Ojala, M., Nieminen, J.,
Lipsanen, A., (...), Heino, J. A
small-molecule inhibitor of integrin α2β1 introduces a new strategy for
antithrombotic therapy. 2010, Thrombosis
and Haemostasis 103 (2), pp. 387-397
178.
Fan Az, Fang Y,
Yesupriva A, Chang MH, Kilmer G, House M, Hayes D, Ned RM, Dowling NF, Mokdad
AH. Gene polymorphisms in association
with self-reported stroke in US adults. The Application of Clinical Genetics. 2010:3 23–28
179.
Stankovic S,
Majkic-Singh N. Genetic aspects of
ischemic stroke: coagulation, homocysteine, and lipoprotein metabolism as
potential risk factors. Crit Rev Clin Lab Sci. 2010;47(2):72-123. Review.
180.
Pavkovic, M.,
Petlichkovski, A., Stojanovic, A., Trajkov, D., Spiroski, M. BGL II polymorhism of the α2β1 integrin
gene in Macedonian population 2010 Macedonian
Journal of Medical Sciences 3 (2), pp. 119-122
181.
Novel Insights
into Genetics of Arterial Thrombosis
182.
Joke Konings,
José W. P. Govers-Riemslag and Hugo ten Cate. Novel Insights into Genetics of Arterial Thrombosis CLINICAL CARDIOGENETICS 2011, Part 5,
331-351, DOI: 10.1007/978-1-84996-471-5_21
Tsantes AΕ,
Nikolopoulos GΚ, Bagos PG, Vaiopoulos G, Travlou A. Lack of association between the platelet
glycoprotein Ia C807T gene polymorphism and coronary artery disease: a
meta-analysis. 2007, International
Journal of Cardiology, 118
(2):189-196 (Impact Factor: 2.878, citations: 5)
183.
Surin WR,
Barthwal MK, Dikshit M. Platelet
collagen receptors, signaling and antagonism: Emerging approaches for the
prevention of intravascular thrombosis., Thromb Res. 2007, in press
184.
Gršković, B., Pašalić, D., Ferenčak, G., Stavljenić-Rukavina, A. Influence
of gene polymorphisms in adhesion molecules and inflammation mediators as
risk factors for coronary heart disease and myocardial infarction - An
overview. 2008, Acta Medica Croatica
62 (1), pp. 41-52
185.
Yumiko
Matsubara, Mitsuru Murata and Yasuo Ikeda. Polymorphisms of Platelet Membrane Glycoproteins. In: Recent Advances in Thrombosis and
Hemostasis 2008
186.
Kvasnička, J.,
Hájková, J., Bobčíková, P., Dušková, D., Poletínová, Š., Kieferová, V.,
Zenáhlíková, Z., Pecen, L. Platelet
gene polymorphisms related to atherothrombogenesis and their frequencies in
the healthy middle-aged Czech population Cor et Vasa 51 (3), pp. 187-193 2009
187.
Gerald Bertrand,
Vincent Jallu, Dominique Saillant, Dominique Kervran, Corinne Martageix, and Cecile Kaplan. The new platelet alloantigen Caba: a single point
mutation Gln716His on the α2 integrin. Transfusion,
2009, Volume 49 Issue 10, Pages 2076 - 2083
Valavanis IK, Bagos PG,
Emiris IZ. β-barrel Transmembrane Proteins: Geometric
Modelling, Detection of Transmembrane Region, and Structural Properties. Computational
Biology and Chemistry, 2006, 30(6):416-24 (Impact Factor: 1.837,
citations: 5)
188.
M.S. Gelfand, D.
Rodionov, Comparative genomics and
functional annotation of bacterial transporters, Physics of Life Reviews (2008), 5(1), pp. 22-49
189.
Scott KA, Bond
PJ, Ivetac A, Chetwynd AP, Khalid S, Sansom MS. Coarse-Grained MD Simulations of Membrane Protein-Bilayer
Self-Assembly. Structure. 2008;16(4):621-630.
190.
Jing Hu. Prediction of Protein Function and Functional
Sites from Protein Sequences. PhD
Thesis. Utah
State University.
2009
191.
Benedito VA, Li
H, Dai X, Wandrey M, He J, Kaundal R, Torres-Jerez I, Gomez SK, Harrison MJ,
Tang Y, Zhao PX, Udvardi MK. Genomic
inventory and transcriptional analysis of Medicago truncatula transporters
Plant Physiol. 2010;152(3):1716-30.
192.
Kik, R.A.,
Leermakers, F.A.M., Kleijn, J.M. Molecular
modeling of proteinlike inclusions in lipid bilayers: Lipid-mediated
interactions 2010 Physical Review E
- Statistical, Nonlinear, and Soft Matter Physics 81 (2), art. no. 021915
Petsalaki
ΕΙ, Bagos PG, Litou ΖΙ, Hamodrakas SJ.
PredSL: A tool for the N-terminal sequence-based prediction
of subcellular location. 2006, Genomics Proteomics and Bioinformatics,
4(1); 48-55 (Impact
Factor: -, citations: 18)
193.
Schwacke R.
Fischer K, Ketelsen B, Krupinska K, Krause K. Comparative survey of plastid and mitochondrial targeting properties
of transcription factors in Arabidopsis and rice. Molecular Genetics and Genomics. 277 (6): 631-646
194.
Klee EW, Sosa
CP. Computational classification of
classically secreted proteins. 2007, Drug
Discovery Today 12 (5-6):
234-240
195.
Kirchberger S,
Leroch M, Huynen MA, Wahl M, Neuhaus HE, Tjaden J. Molecular and biochemical analysis of the plastidic ADP-glucose
transporter (ZmBT1) from Zea mays. J
Biol Chem. 2007;282(31):22481-91
196.
Zhao X, de Palma
J, Oane R, Gamuyao R, Luo M, Chaudhury A, Hervé P, Xue Q, Bennett J. OsTDL1A binds to the LRR domain of rice
receptor kinase MSP1, and is required to limit sporocyte numbers. Plant J. 2008;54(3):375-87
197.
Aarti Garg and Gajendra P. S. Raghava. A machine
learning based method for the prediction of secretory proteins using amino
acid composition, their order and similarity-search. In Silico
Biology 8, 0012 (2008)
198.
Rokov-Plavec J,
Dulic M, Duchêne AM, Weygand-Durasevic
I. Dual targeting of organellar seryl-tRNA synthetase to maize
mitochondria and chloroplasts. Plant
Cell Rep. 2008;27(7):1157-68
199.
Schliebner, I.; Pribil, M.; Zuhlke, J.; Dietzmann, A.; Leister, D. A Survey of Chloroplast Protein Kinases
and Phosphatases in Arabidopsis thaliana. Current Genomics, 9(3), 2008;184-190(7)
200.
Alves, Rui;
Vilaprinyo, Ester; Sorribas, Albert. Integrating Bioinformatics and Computational
Biology: Perspectives and Possibilities for In Silico Network Reconstruction
in Molecular Systems Biology. Current
Bioinformatics, 3(2), 2008; 98-129(32)
201.
Yu QB, Li G,
Wang G, Sun JC, Wang PC, Wang C, Mi HL, Ma WM, Cui J, Cui YL, Chong K, Li YX,
Li YH, Zhao Z, Shi TL, Yang ZN. Construction
of a chloroplast protein interaction network and functional mining of
photosynthetic proteins in Arabidopsis thaliana. Cell Res. 2008; 18(10):1007-19.
202.
Gschloessl B,
Guermeur Y, Cock JM. HECTAR: a method
to predict subcellular targeting in heterokonts. BMC Bioinformatics. 2008; 9(1):393.
203.
Zhang, S.-B.,
Lai, J.-H., He, J.-G. A novel approach
for prediction of protein subcellular localization using optimal local
information 2008 Zhongshan Daxue
Xuebao/Acta Scientiarum Natralium Universitatis Sunyatseni 47 (6), pp.
16-21
204.
Yoshie S.
Momonoki, Kosuke Yamamoto and Suguru Oguri. Molecular Cloning of Oxygen-Evolving Enhancer Genes Induced by Salt
Treatment in a Halophyte, Salicornia europaea L. Plant Production Science. 12
(2009) , No. 2 193-198
205.
Blum T,
Briesemeister S, Kohlbacher O. MultiLoc2:
integrating phylogeny and Gene Ontology terms improves subcellular protein
localization prediction BMC
Bioinformatics. 2009;10:274.
206.
Briesemeister S,
Rahnenführer J, Kohlbacher O. Going
from where to why--interpretable prediction of protein subcellular
localization. Bioinformatics. 2010;26(9):1232-8.
207.
Briesemeister S,
Rahnenführer J, Kohlbacher O. YLoc--an
interpretable web server for predicting subcellular localization. Nucleic Acids Res. 2010. [Epub ahead
of print]
208.
Zhang X, Cui J,
Nilsson D, Gunasekera K, Chanfon A, Song X, Wang H, Xu Y, Ochsenreiter T. The Trypanosoma brucei MitoCarta and its
regulation and splicing pattern during development. Nucleic Acids Res.
2010 Jul 26. [Epub ahead of print]
209.
Lee YH, Tan AT,
Chung MC. Subcellular fractionation
methods and strategies for proteomics. Proteomics, 2010
210.
Gabilly ST, Dreyfuss
BW, Karamoko M, Corvest V, Kropat J, Page MD, Merchant SS, Hamel PP. CCS5, a thioredoxin-like protein involved
in the assembly of plastid c-type cytochromes. J Biol Chem. 2010 Sep 24;285(39):29738-49. Epub 2010 Jul 13.
Liappas I, Chatzipanagiotou S,
Nicolaou C, Tzavellas E, Bagos P, Soldatos CR. Interrelation of
Hepatic Function, Thyroid Activity and Mood Status of Alcohol-dependent Individuals. In Vivo. 2006; 20(2): 293-300. (Impact Factor: 0.99, citations: 2)
211.
Bitri L, Dhaouadi N, Ouertani L, Maurel D, Ben Saad M. Toxicity of hexachlorobenzene in Meriones unguiculatus: effects on thyroid and liver. Comptes
Rendus – Biologies, 330 (5), 2007: 410-418
212.
G. A. Barclay,
J. Barbour, S. Stewart, C. P. Day and E. Gilvarry Adverse physical effects of alcohol misuse Advances in Psychiatric Treatment (2008) 14: 139-151
Bagos PG, Liakopoulos TD,
Hamodrakas SJ. Algorithms for incorporating prior topological information
in HMMs: Application to transmembrane proteins. 2006, BMC Bioinformatics; 7:189 (Impact
Factor: 3.49, citations: 18)
213.
Madhavi K.
Ganapathiraju. Application of Language
Technologies in Biology: Feature Extraction and Modeling for Transmembrane
Helix Prediction. PhD Thesis, Carnegie Mellon
University, 2007
214.
Planchon S,
Chambon C, Desvaux M, Chafsey I, Leroy S, Talon R, Hébraud M. Proteomic analysis of cell envelope from
Staphylococcus xylosus C2a, a coagulase-negative staphylococcus. J Proteome Res. 2007;6(9):3566-80
215.
Jing Hu and
Changhui Yan. HMM_RA: An Improved Method for Alpha-Helical
Transmembrane Protein Topology Prediction. Bioinformatics and Biology Insights 2008:2, 67-74
216.
Merlino A,
Varriale S, Coscia MR, Mazzarella L, Oreste U. Structure and dimerization of the teleost transmembrane
immunoglobulin region. J Mol Graph
Model. 2008 Jul 22
217.
Vasilakos AV, Spyrou G Computational Intelligence in Medicine and Biology: A Survey JOURNAL
OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE 5 (12): 2365-2376 2008
218.
Lin F, Wang RX Molecular
modeling of the three-dimensional structure of GLP-1R and its interactions with
several agonists JOURNAL OF MOLECULAR MODELING 15 (1):
53-65 2009
219.
Nugent, T.,
Jones, D.T. Transmembrane protein
topology prediction using support vector machines 2009 BMC Bioinformatics 10, art. no. 159
220.
De Grassi A, Ciccarelli FD. Tandem repeats modify the structure of
human genes hosted in segmental duplications. Genome Biol.
2009;10(12):R137
221.
Sami Laroum
Dominique Tessier, B´eatrice Duval, and Jin-Kao Hao. A Local Search Appproach for Transmembrane Segment and Signal Peptide
Discrimination. In C. Pizzuti, M.D. Ritchie, and M. Giacobini (Eds.):
EvoBIO 2010, LNCS 6023, pp. 134–145, 2010., Springer-Verlag Berlin
Heidelberg 2010
222.
Choudry AR, Novic M. Data-driven
model for the prediction of protein transmembrane regions. SAR and QSAR in Environmental Research,
Volume 20, Issue 7 & 8 October 2009 , pages 741 – 754
223.
Goudenège, D., Avner, S., Lucchetti-Miganeh, C., Barloy-Hubler, F. CoBaltDB: Complete bacterial and archaeal
orfeomes subcellular localization database and associated resources. 2010
BMC Microbiology 10, art. no. 88
224.
Pylouster J, Bornot A, Etchebest C, de Brevern AG. Influence of assignment on the prediction
of transmembrane helices in protein structures. Amino Acids. 2010 Mar 28. [Epub ahead of print]
225.
Desvaux M, Hebraud M. Analysis
of Cell Envelope proteins. In Handbook
of Listeria monomytogenes. Liu D (Ed). pp. 359-384
226.
Tusnady GE, Simon I. Shedding
light on transmembrane topology. In: Introduction
to Protein Structure prediction,
Huzefa Rangwala, George Karypis (Eds). 2010
227.
Daniel E. Westholm, Jacob D. Marold, Kevin J. Viken, Alicia H. Duerst,
Grant W. Anderson, and Jon N. Rumbley Evidence
of Evolutionary Conservation of Function between the Thyroxine Transporter
Oatp1c1 and Major Facilitator Superfamily Members. Endocrinology, 2010
228.
Tusnady GE, Simon I. Topology
Prediction of Helical Transmembrane Proteins: How Far Have We Reached? Current
Protein and Peptide Science, Volume 11, Number 7, November 2010 , pp.
550-561(12)
229.
Tusnady GE, Simon I Resource
for structure related information on transmembrane proteins. In
Structural Bioinformatics of Membrane Proteins (Ed. Dmitrij Frishman) 2010
230.
Janusz M. Bujnicki. First Steps of Protein Structure Prediction. In Karolina Majorek,
Łukasz Kozłowski, Marcin Jąkalski2 Janusz M. Bujnicki (Eds) Prediction of Protein Structures, Functions, and Interactions © 2009 John Wiley & Sons, Ltd
Bagos PG, Nikolopoulos G,
Ioannidis A. Chlamydia pneumoniae infection and the risk of multiple sclerosis:
a meta-analysis. Multiple Sclerosis 2006, 12(4), 397-411
(Impact Factor: 3.312, citations: 21)
231.
Stratton CW,
Wheldon DB. Multiple sclerosis: an infectious syndrome involving
Chlamydophila pneumoniae. Trends Microbiol. 2006; 14(11):
474-9
232.
[Editorial-Research Highlights]. An
association between Chlamydia pneumoniae and multiple sclerosis. Nature
Clinical Practice Neurology (2006) 2,
467-468
233.
Ascherio A,
Munger KL. Environmental risk factors
for multiple sclerosis. Part I: The role of infection. 2007; Annals of Neurology 61 (4): 288-299
234.
Krone B, Pohl D,
Rostasy K, Kahler E, Brunner E, Oeffner F, Grange JM, Gartner J, Hanefeld F. Common infectious agents in multiple
sclerosis: a case control study in children. Mult Scler. 2008;14(1):136-9
235.
Fainardi, Enrico; Castellazzi, Massimiliano; Seraceni,
Silva; Granieri, Enrico; Contini, Carlo. Under the Microscope: Focus on
Chlamydia pneumoniae Infection and Multiple Sclerosis. Current
Neurovascular Research, Volume 5, Number 1, February 2008 , pp. 60-70(11)
236.
Pordeus V,
Szyper-Kravitz M, Levy RA, Vaz
NM, Shoenfeld Y. Infections and Autoimmunity: A Panorama.
Clin Rev Allergy Immunol. 2008
237.
Contini C, Seraceni S, Cultrera R, Castellazzi M,
Granieri E, and E Fainardi. Molecular detection of Parachlamydia-like organisms
in cerebrospinal fluid of patients with multiple sclerosis. Multiple
Sclerosis, 2008; 14(4): 564 –
566
238.
Rýzlová, M., Gregor, P.
Acute pericarditis as an organic
manifestation of the acute infection Chlamydia pneumoniae. 2008; Vnitrni Lekarstvi 54 (9), pp. 866-870
239.
Sessa, R.,
Cipriani, P., di Pietro, M., Schiavoni, G., Santino, I., del Piano, M. Chlamydia pneumoniae and chronic diseases
with a great impact on public health, 2008, International Journal of Immunopathology and Pharmacology 21 (4),
pp. 1041-1043
240.
Thornton AE, DeFreitas VG. The Neuropsychology of Multiple Sclerosis. In “Neuropsychological
Assessment of Neuropsychiatric and Neuromedical Disorders” Igor Grant,
Kenneth M. Adams, Kenneth Adams (Eds) Edition: 3, Published by Oxford University Press US, 2009
241.
Giuseppe
Giocoli, Cornelis J. Biesheuvel, Heather F. Gidding and David Andresen. Advances in diagnostics for microbial
agents: can clinical validation keep pace with the technical promises?
Ann Ist Super Sanità 2009 | Vol. 45, No. 2: 168-172
242.
Krone, B.,
Oeffner, F., Grange, J.M Is the risk
of multiple sclerosis related to the 'biography' of the immune system? 2009
Journal of Neurology 256 (7), pp. 1052-1060
243.
Beagley, K.,
Huston, W.M., Hansbro, P.M., Timms, P. Chlamydial
infection of immune cells: Altered function and implications for disease
2009 Critical Reviews in Immunology 29 (4), pp. 275-305
244.
Bekir Kocazeybek,
Belma Karatoka, Ayse Altıntas, Mustafa Aslan, Suat Saribas, Jale Agaoglu,
Sevgi Ergin, Vedat Koksal, Ahmet Dirican and Sabahattin Saib. Infection and genotype relationship in
multiple sclerosis: Do Chlamydophila pneumoniae and human herpes virus-6 infections
together with APO E alleles have a role in
the etiopathogenesis of multiple sclerosis? African Journal of Microbiology Research Vol. 3(9) pp. 565-571 ,
September, 2009
245.
Fainardi E,
Castellazzi M, Tamborino C, Seraceni S, Tola MR, Granieri E, Contini C. Chlamydia pneumoniae-specific intrathecal
oligoclonal antibody response is predominantly detected in a subset of
multiple sclerosis patients with progressive forms. J Neurovirol. 2010 Jan 6. [Epub ahead of print]
246.
Carlo Contini., Silva Seraceni., Rosario Cultrera.,
Massimiliano Castellazzi., Enrico
Granieri., Enrico Fainardi. Chlamydophila pneumoniae infection and its role in neurological
disorders. Interdisciplnary
Perspectives on Infectious Diseases. 2009
247.
Sunita
Venkateswaran, Brenda Banwell Pediatric
multiple sclerosis. Neurologist.
2010 (2):92-105
248.
Klaus Lauer; Environmental risk factors in multiple
sclerosis Expert Rev Neurother.
2010 Mar
;10 (3):421-40
249.
Strobl, Dominika (2010) Stillen und jahreszeitenabhängige Geburtenrate bei Patienten mit
Multipler Sklerose. PhD Thesis, Universität Regensburg
250.
Siddharama
Pawate and Subramaniam Sriram The role
of infections in the pathogenesis and course of multiple sclerosis. Ann Indian Acad Neurol. 2010 Apr–Jun;
13(2): 80–86.
251.
Griffith, Joanna
Elizabeth. Studies into the diagnosis,
treatment and management of chlamydiosis in koalas. University of Sydney.
Faculty of Veterinary Science. PhD Thesis, 2010
Sgourakis NG, Bagos PG,
Hamodrakas SJ. Prediction of the coupling specificity of GPCRs to four
families of G-proteins using Hidden Markov Models and Artificial Neural
Networks. Bioinformatics, 2005, 21(22): 4101-6.
(Impact Factor: 4.328, citations: 22)
252.
Ono T, Hishigaki
H. Prediction of GPCR-G Protein
Coupling Specificity Using Features of Sequences and Biological Functions. Genomics, Proteomics and Bioinformatics.
2006. 4 (4), 238-244
253.
Jiang Z, Guan C,
Zhou Y. Computational prediction of
the coupling specificity of g protein-coupled receptors. Appl Biochem Biotechnol. 2007;141 (1):109-18.
254.
Ganga D.
Ghimire, Kenichiro Imai, Fumitsugu Akazawa, Toshiyuki Tsuji, Masashi Sonoyama
and Shigeki Mitaku. Physicochemical properties of amino acid sequences of
G-proteins for understanding GPCR-G-protein coupling. 2006; Chem-Bio
Informatics Journal: 6(1) 1-16
255.
Mann S, Li J,
Chen YP. A pHMM-ANN based
discriminative approach to promoter identification in prokaryote genomic
contexts. Nucleic Acids Res.
2006
256.
Christopher H.
Bryant, Daniel C. Fredouille, Alex Wilson, Channa K. Jayawickreme, Steven
Jupe and Simon Topp. Pertinent Background Knowledge for Learning Protein
Grammars. Lecture Notes in Computer Science, 4212 LNAI, 54-65
257.
Jiang ZR, Zhou
YH. Using silico methods predicting ligands for orphan GPCRs. Curr
Protein Pept Sc, 2006; 7(5): 459-464
258.
Peirson S,
Foster RG. Melanopsin: another way of signaling light. Neuron.
2006; 49(3):331-9
259.
Jacques Haiech, Jean-Luc Galzi, Marie-Claude Kilhoffer,
Marcel Hibert, Didier Rognan. Why G Protein-coupled Receptors Databases are Needed. In Raimund
Mannhold, Hugo Kubinyi, Gerd Folkers (Eds). Ligand Design for G Protein-coupled
Receptors. 2006 Wiley, 2; 27-38
260.
Promponas VJ. Genomes,
Genes, Proteins and Computers. Computational Molecular Biology and
Bioinformatics. UPGRADE Vol. VII, No. 1, 2006 47-52
261.
Lu F, Li J,
Jiang Z. Computational identification
and analysis of G protein-coupled receptor targets. Drug Development Research. 67(10):
771 – 780
262.
Quaynor S, Hu L,
Leung PK, Feng H, Mores N, Krsmanovic LZ, Catt KJ. Expression of a Functional GPR54-Kisspeptin Autoregulatory System in
Hypothalamic GnRH Neurons. Mol
Endocrinol. 2007
263.
Muramatsu T. Studies on the prediction of membrane
protein function from protein sequence. 2006, PhD Thesis, Nara Institute of Science and Technology.
264.
Quaynor S, Hu L,
Leung PK, Feng H, Mores N, Krsmanovic LZ, Catt KJ. Expression
of a functional g protein-coupled receptor 54-kisspeptin autoregulatory
system in hypothalamic gonadotropin-releasing hormone neurons. Mol
Endocrinol. 2007;21(12):3062-70
265.
Sandra Siehler, G12/13-dependent signaling of
G-protein-coupled receptors: disease context and impact on drug discovery.
Expert Opinion on Drug Discovery
2007, Vol. 2, No. 12, Pages 1591-1604
266.
Shimamura T,
Hiraki K, Takahashi N, Hori T, Ago H, Masuda K, Takio K, Ishiguro M, Miyano
M. Crystal structure of squid
rhodopsin with intracellularly extended cytoplasmic region. JOURNAL OF BIOLOGICAL CHEMISTRY 283 (26):
17753-17756 JUN 27 2008
267.
Gu, Q., Ding,
Y.-S., Zhang, T.-L. Prediction of
G-protein-coupled receptor classes with pseudo amino acid composition.2nd International Conference on
Bioinformatics and Biomedical Engineering, iCBBE 2008, art. no. 4535095,
pp. 876-879
268.
Gookin TE, Kim J, Assmann SM. Whole proteome identification of plant candidate
G-protein coupled receptors in Arabidopsis, rice, and poplar: computational
prediction and in-vivo protein coupling. Genome Biol. 2008;9(7):R120
269.
Leung T, Humbert
JE, Stauffer AM, Giger KE, Chen H, Tsai HJ, Wang C, Mirshahi T, Robishaw JD. The
orphan G protein-coupled receptor 161 is required for left-right patterning
Dev Biol. 2008;323(1):31-40.
270.
Park, H.-C., Eo,
H.-S., Kim, W. A computational
approach for the classification of protein tyrosine kinases 2009 Molecules and Cells 28 (3), pp.
195-200
271.
Krsmanovic,
L.Z., Hu, L., Leung, P.-K., Feng, H., Catt, K.J. The hypothalamic GnRH pulse generator: multiple regulatory mechanisms
2009 Trends in Endocrinology and
Metabolism 20 (8), pp. 402-408
272.
Siehler, S. Regulation
of RhoGEF proteins by G12/13-coupled receptors 2009 British Journal of Pharmacology 158 (1), pp. 41-49
273.
Gu, Q., Ding, Y.
Binary particle swarm optimization
based prediction of G-protein-coupled receptor families with feature
selection 2009 World Summit on
Genetic and Evolutionary Computation, 2009 GEC Summit - Proceedings of the
1st ACM/SIGEVO Summit on Genetic and Evolutionary Computation, GEC'09,
pp. 171-176
Sgourakis NG, Bagos PG, Papasaikas PK, Hamodrakas SJ. Prediction
of GPCRs coupling specificity to G-proteins using refined profile hidden
Markov models. BMC Bioinformatics, 2005, 6:104.
(Impact Factor: 3.781, citations: 24)
274.
Guan CP, Jiang ZR, Zhou YH. Predicting
the coupling specificity of GPCRs to G-proteins by support vector machines. Genomics Proteomics Bioinformatics. 2005; 3(4):
247-51
275.
Guo Y, Li M, Lu
M, Wen Z, Huang Z. Predicting G-protein coupled receptors-G-protein
coupling specificity based on autocross-covariance transform. Proteins.
2006; 65(1): 55-60.
276.
Ono T, Hishigaki
H. Prediction of GPCR-G Protein
Coupling Specificity Using Features of Sequences and Biological Functions. Genomics, Proteomics and Bioinformatics. 2006. 4 (4), 238-244
277.
Jiang Z, Guan C,
Zhou Y. Computational prediction of
the coupling specificity of G protein-coupled receptors. Appl Biochem Biotechnol. 2007;141 (1):109-18.
278.
Peirson S,
Foster RG. Melanopsin: another way of signaling light. Neuron.
2006; 49(3):331-9
279.
Wicher D, Agricola
HJ, Sohler S, Gundel M, Heinemann SH, Wollweber L, Stengl M, Derst C. Differential
receptor activation by cockroach adipokinetic hormones produces differential
effects on ion currents, neuronal activity, and locomotion. J
Neurophysiol. 2006; 95(4): 2314-25
280.
Muramatsu T,
Suwa M. Statistical analysis and prediction of functional residues
effective for GPCR-G-protein coupling selectivity. Protein
Engineering, Design and Selection. 2006; 19: 277-283.
281.
Jacques Haiech, Jean-Luc Galzi, Marie-Claude Kilhoffer,
Marcel Hibert, Didier Rognan. Why G Protein-coupled Receptors Databases are Needed. In Raimund
Mannhold, Hugo Kubinyi, Gerd Folkers (Eds). Ligand Design for G Protein-coupled
Receptors. 2006 Wiley, 2; 27-38
282.
Suga H, Haga T.
Ligand
screening system using fusion proteins of G protein-coupled receptors with G
protein α subunits. Neurochemistry
International 2007, 51 (2-4
SPEC. ISS.): 140-164
283.
Muramatsu T. Studies on the prediction of membrane
protein function from protein sequence. 2006, PhD Thesis, Nara Institute of Science and Technology.
284.
Davies MN,
Gloriam DE, Secker A, Freitas AA, Mendao M, Timmis J, Flower DR. Proteomic applications of automated GPCR
classification. Proteomics.
2007;7(16):2800-14.
285.
B.M.
Groenendijk. Uncovering the
Classification Characteristics of Olfactory G Protein-Coupled Receptors.
MSc Thesis, 2007. University of Leiden, The Netherlands
286.
Kuo-Li Chiang. Human LTR classification and prediction
using Profile Hidden Markov Models. MSc Thesis, 2007, Department of
Computer Science and Information
Engineering National Central University, Taiwan
287.
Miller GK,
Fridell SL. A Forgotten Discrete
Distribution? Reviving the Negative Hypergeometric Model. The American Statistician, Volume 61,
Number 4, November 2007 , pp. 347-350(4)
288.
Wicher D, Derst
C, Gautier H, Lapied B, Heinemann SH, Agricola HJ. The satiety signaling
neuropeptide perisulfakinin inhibits the activity of central neurons
promoting general activity Frontiers in Cellular Neuroscience, 2008; in press
289.
Jens Lättig. Investigations of Interactions of G
Protein-Coupled Receptors with Their Ligands and G Proteins. PhD Thesis,
2008, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin
290.
Juan Carlos Mobarec, Marta Filizola. Advances in
the development and application of computational methodologies for structural
modeling of G-protein-coupled receptors. Expert Opinion on Drug
Discovery 2008, 3(3): 343-355
291.
Tagore S, Gomase VS, De RK. Pathway
Modeling: New face of Graphical Probabilistic Analysis. J. Proteomics
Bioinformatics Volume 1(5): 281-286(2008) – 281
292.
Gu, Q., Ding,
Y.-S., Zhang, T.-L. Prediction of
G-protein-coupled receptor classes with pseudo amino acid composition.2nd International Conference on
Bioinformatics and Biomedical Engineering, iCBBE 2008, art. no. 4535095,
pp. 876-879
293.
Ghimire, G.D.,
Tanizawa, H., Sonoyama, M., Mitaku, S. Physicochemical
properties of GPCR amino acid sequences for understanding GPCR-G-protein
coupling, 2008, Chem-Bio
Informatics Journal 8 (2), pp. 49-57
294.
Matthew N
Davies, Andrew Secker, Mark Halling-Brown, David S Moss, Alex A Freitas, Jon
Timmis, Edward Clark and Darren R Flower. GPCRTree: online hierarchical classification of GPCR function. BMC Research Notes 2008, 1:67
295.
Park, H.-C., Eo,
H.-S., Kim, W. A computational
approach for the classification of protein tyrosine kinases 2009 Molecules and Cells 28 (3), pp.
195-200
296.
Van Horn WD, Beel AJ, Kang C, Sanders CR. The impact
of window functions on NMR-based paramagnetic relaxation enhancement
measurements in membrane proteins. Biochim Biophys Acta. 2010 Feb;1798(2):140-9.
Epub 2009 Sep 12.
297.
Gu Q, Ding YS,
Zhang TL. Prediction of
G-protein-coupled receptor classes in low homology using Chou's pseudo amino
acid composition with approximate entropy and hydrophobicity patterns. Protein Pept Lett. 2010
May;17(5):559-67.
Bagos PG, Liakopoulos TD,
Hamodrakas SJ. Evaluation of methods for predicting the topology of
ß-barrel outer membrane proteins and a consensus prediction method. BMC
Bioinformatics, 2005, 6:7. (Impact Factor: 3.781,
citations: 42)
298.
Gromiha MM,
Ahmad S. Suwa M. TMBETA-NET: discrimination and prediction of membrane
spanning ß-strands in outer membrane proteins. Nucleic Acids Research
2005 33(Web Server issue):W164-W167
299.
Forrest LR, Tang
CL, Honig B. On the accuracy of homology modeling and sequence alignment
methods applied to membrane proteins. Biophys J. 2006 91(2):508-17.
300.
Pajon R, Yero D,
Lage A, Llanes A, Borroto CJ. Computational identification of beta-barrel
outer-membrane proteins in Mycobacterium tuberculosis predicted proteomes as
putative vaccine candidates. Tuberculosis 86 (3-4): 290-302; 2006
301.
Martin J., de Brevern A.G. & Camproux A.C. Structural study of Outer Membrane
Proteins using structural alphabet, Septièmes
Journées Ouvertes de Biologie, Informatique et Mathématiques [JOBIM]
(Bordeaux, 5-7 july 2006),
302.
Mary Q. Yang,
Jack Y. Yang, Craig W. Codrington. Identification
of Transmembrane Proteins Using Variants of the Self-Organizing Feature Map
Algorithm. In Knowledge discovery
in bioinformatics : techniques, methods, and applications (Eds Xiaohua
Hu, Yi Pan). 2006
303.
Elofsson A, von
Heijne G. Membrane Protein Structure:
Prediction vs Reality. Annu Rev
Biochem. 2007, 76: 125-140
304.
Punta M, Forrest
LR, Bigelow H, Kernytsky A, Liu J, Rost B. Membrane protein prediction methods. Methods. 2007; 41(4):
460-74.
305.
Garrow AG, Westhead DR. A consensus algorithm to screen genomes
for novel families of transmembrane beta barrel proteins. Proteins. 2007 Jun 7
306.
Sapay N, LES
PEPTIDES D’ANCRAGES A L’INTERFACE MEMBRANAIRE, PhD Thesis, UNIVERSITE CLAUDE BERNARD - LYON I, 2006
307.
Albeau K, Analyse
à grande échelle des textures des séquences protéiques via l’approche
Hydrophobic Cluster Analysis (HCA). PhD Thesis, UNIVERSITE VERSAILLES
SAINT-QUENTIN-EN-YVELINES, 2005
308.
Wang Tao, Liu Chun-kit. Reverse vaccine analysis methods and
vaccine development application. Progress in Microbiology and Immunology.
2006; 34 (1):.66-73 2006
309.
Hye-Kyoung Jun,
Hae-Ri Lee, Sung-Hoon Lee and Bong-Kyu Choi. Mapping of the proinflammatory domains
of MspTL of Treponema lecithinolyticum.
2007. Microbiology 153(8): 2386-2392
310.
Bigelow H, Rost
B. Online tools for predicting
integral membrane proteins. In: M Peirce & R Wait (Eds.): Proteomic analysis of membrane proteins:
methods and protocols Humana, 2007, in press
311.
Martin J, de
Brevern AG, Camproux AC. In silico
local structure approach: A case study on Outer Membrane Proteins. Proteins, 2007, in press
312.
Gromiha MM,
Yabuki Y, Suwa M. TMB Finding
Pipeline: Novel Approach for Detecting beta-Barrel Membrane Proteins in
Genomic Sequences. J Chem Inf
Model. 2007, in press
313.
Randall A, Cheng
J, Sweredoski M, Baldi P. TMBpro:
Secondary Structure, beta-contact, and Tertiary Structure Prediction of
Transmembrane beta-Barrel Proteins. Bioinformatics.
2007
314.
Satu
Jääskeläinen, Pentti Riikonen, Tapio Salakoski and Mauno Vihinen. Evaluation of Protein Hydropathy Scales.
In 2007 IEEE International Conference
on Bioinformatics and Biomedicine BIBM 2007, Nov 2007.
315.
M.S. Gelfand, D.
Rodionov, Comparative genomics and
functional annotation of bacterial transporters, Physics of Life Reviews (2007), doi: 10.1016/j.plrev.2007.10.003
316.
Yang JY, Yang
MQ, Dunker AK, Deng Y, Huang X. Investigation
of transmembrane proteins using a computational approach. BMC Genomics. 2008;9 Suppl 1:S7.
317.
Viratyosin W,
Ingsriswang S, Pacharawongsakda E, Palittapongarnpim P. Genome-wide subcellular localization of putative outer membrane and
extracellular proteins in Leptospira interrogans serovar Lai genome using
bioinformatics approaches. BMC
Genomics. 2008 Apr 21;9:181.
318.
Hu J, Yan C. A method for discovering transmembrane
beta-barrel proteins in Gram-negative bacterial proteomes. Computational Biology and Chemistry 32
(4), pp. 298-301: 2008
319.
Ursula Hinz, and
Amos Bairoch. The Impact of 3D
Structures on a Protein Knowledgebase: From Proteins to Systems. In STRUCTURAL PROTEOMICS (Eds) Joel L
Sussman & Israel
Silman, World Scientific Publishing Co, 2008
320.
Gromiha MM,
Ahmad S. Suwa M. Neural network based
prediction of protein structure and function: Comparison with other machine
learning methods. 2008; Proceedings
of the International Joint Conference on Neural Networks, art. no.
4634033, pp. 1739-1744
321.
Peris P, López
D, Campos M. IgTM: an algorithm to predict transmembrane domains and
topology in proteins. BMC Bioinformatics. 2008 Sep 10;9:367
322.
Díaz-Mejía JJ,
Babu M, Emili A. Computational and experimental approaches to chart the
Escherichia coli cell-envelope-associated proteome and interactome. FEMS
Microbiol Rev. 2009; 33(1):66-97.
323.
Song, H.,
Sandie, R., Wang, Y., Andrade-Navarro, M.A., Niederweis, M. Identification
of outer membrane proteins of Mycobacterium tuberculosis 2008 Tuberculosis
88 (6), pp. 526-544
324.
Vasilakos AV, Spyrou G Computational Intelligence in Medicine and Biology: A Survey JOURNAL
OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE 5 (12): 2365-2376 2008
325.
M.L. Kalmokoff,
J.W. Austinb, T.D. Cyrc, M.A. Heffordc, R.M. Teatherd and L.B. Selingere, Physical and genetic characterization of
an outer-membrane protein (OmpM1) containing an N-terminal S-layer-like
homology domain from the phylogenetically Gram-positive gut anaerobe
Mitsuokella multacida. Anaerobe,
2009 in press
326.
Kelm S, Shi J,
Deane CM. iMembrane: homology-based
membrane-insertion of proteins. Bioinformatics.;25(8):1086-8.
327.
Remmert M, Linke
D, Lupas AN, Soding J. HHomp-prediction
and classification of outer membrane proteins NUCLEIC ACIDS RESEARCH 37: W446-W451 Suppl. S JUL 1 2009
328.
Koehler, J.,
Mueller, R., Meiler, J. Improved
prediction of trans-membrane spans in proteins using an artificial neural
network 2009 IEEE Symposium on Computational Intelligence in Bioinformatics and
Computational Biology, CIBCB 2009 - Proceedings, art. no. 4925709, pp.
68-74
329.
Fariselli P,
Savojardo C, Martelli PL, Casadio R. Grammatical-Restrained
Hidden Conditional Random Fields for Bioinformatics applications ALGORITHMS FOR MOLECULAR BIOLOGY 4:
Art. No. 13 OCT 22 2009
330.
Heinz E, Tischler P, Rattei T, Myers G, Wagner M, Horn M. Comprehensive in silico prediction and
analysis of chlamydial outer membrane proteins reflects evolution and life
style of the Chlamydiae. BMC Genomics. 2009; 10:634.
331.
Ursula Hinz; From protein sequences to 3D-structures
and beyond: the example of the UniProt knowledgebase. Cell Mol Life Sci. 2010;;67
(7):1049-64
332.
Ou YY, Chen SA, Gromiha MM. Prediction
of membrane spanning segments and topology in beta-barrel membrane proteins
at better accuracy. J Comput Chem.
2010 Jan 15;31(1):217-23.
333.
Piedachu Peris and Damián López. Transducer
Inference by Assembling Specific Languages. Lecture Notes in Computer Science, 2010, Volume 6339/2010, 178-188, DOI: 10.1007/978-3-642-15488-1_15
334.
Goudenège, D., Avner, S.,
Lucchetti-Miganeh, C., Barloy-Hubler, F. CoBaltDB:
Complete bacterial and archaeal orfeomes subcellular localization database
and associated resources. 2010 BMC Microbiology 10,
art. no. 88
335.
Zou L, Wang Z, Wang Y, Hu F. Combined
prediction of transmembrane topology and signal peptide of beta-barrel
proteins: using a hidden Markov model and genetic algorithms. Comput Biol Med. 2010 Jul;40(7):621-8.
Epub 2010 May 21.
336.
Tusnady GE, Simon I. Shedding
light on transmembrane topology. In: Introduction
to Protein Structure prediction,
Huzefa Rangwala, George Karypis (Eds). 2010
337.
Cox DL, Luthra A, Dunham-Ems S, Desrosiers DC, Salazar JC, Caimano MJ,
Radolf JD. Surface immunolabeling and
consensus computational framework to identify candidate rare outer membrane
proteins of Treponema pallidum. Infect
Immun. 2010 Sep 27. [Epub ahead of print]
338.
Tusnady GE, Simon I. Shedding
light on transmembrane topology. In: Introduction
to Protein Structure prediction,
Huzefa Rangwala, George Karypis (Eds). 2010
339.
Satu Jaaskelainen, Pentti Riikonen, Tapio Salakoski, Mauno Vihinen. Accuracy of protein hydropathy
predictions. International Journal of Data Mining and Bioinformatics. Volume 4, Number 6 /
2010, pp 735 - 754
Elefsinioti AL, Bagos PG, Spyropoulos IC,
Hamodrakas SJ. A database for G Proteins and their interaction with
GPCRs. BMC Bioinformatics, 2004, 5:208.
(Impact Factor: 3.781,
citations: 19)
340.
Guo Y, Li M, Lu
M, Wen Z, Huang Z. Predicting G-protein coupled receptors-G-protein
coupling specificity based on autocross-covariance transform. Proteins.
2006; 65(1): 55-60.
341.
Ono T, Hishigaki
H. Prediction of GPCR-G Protein
Coupling Specificity Using Features of Sequences and Biological Functions. Genomics, Proteomics and Bioinformatics. 2006. 4 (4), 238-244
342.
Jiang Z, Guan C,
Zhou Y. Computational prediction of
the coupling specificity of g protein-coupled receptors. Appl Biochem Biotechnol. 2007;141 (1):109-18.
343.
Fang YC, Sun WH,
Wu LC, Huang HD, Juan HF, Horng JT. RINGdb:
an integrated database for G protein-coupled receptors and regulators of G
protein signaling. BMC Genomics. 2006; 7:317.
344.
Ganga D.
Ghimire, Kenichiro Imai, Fumitsugu Akazawa, Toshiyuki Tsuji, Masashi Sonoyama
and Shigeki Mitaku. Physicochemical properties of amino acid sequences of
G-proteins for understanding GPCR-G-protein coupling. 2006; Chem-Bio
Informatics Journal: 6(1) 1-16
345.
Guan CP, Jiang
ZR, Zhou YH. Predicting the coupling specificity of GPCRs to G-proteins by
support vector machines. Genomics Proteomics Bioinformatics. 2005;
3(4): 247-51
346.
Fanelli F, De
Benedetti PG. Computational modeling approaches to structure-function
analysis of G protein-coupled receptors. Chem Rev. 2005; 105(9):
3297-351
347.
Jacques Haiech, Jean-Luc Galzi, Marie-Claude Kilhoffer,
Marcel Hibert, Didier Rognan. Why G Protein-coupled Receptors Databases are Needed. In Raimund
Mannhold, Hugo Kubinyi, Gerd Folkers (Eds). Ligand Design for G Protein-coupled
Receptors. 2006 Wiley, 2; 27-38
348.
Ebbs ML, Amrein
H. Taste and pheromone perception in
the fruit fly Drosophila melanogaster. Pflugers Arch. 2007;454(5):735-47
349.
Suga H, Haga T.
Ligand
screening system using fusion proteins of G protein-coupled receptors with G
protein α subunits. Neurochemistry
International 2007, 51 (2-4
SPEC. ISS.): 140-164
350.
Yu-Ching Fang. An Integrated Database for G-Protein
Coupled Receptors and Regulators of G-Protein Signaling. PhD Thesis, 2007, Institute of Life Science,
National Central University,
Taiwan
351.
Shimamura T,
Hiraki K, Takahashi N, Hori T, Ago H, Masuda K, Takio K, Ishiguro M, Miyano
M. Crystal structure of squid
rhodopsin with intracellularly extended cytoplasmic region. JOURNAL OF BIOLOGICAL CHEMISTRY 283 (26):
17753-17756 JUN 27 2008
352.
Gookin TE, Kim J, Assmann SM. Whole proteome identification of plant candidate
G-protein coupled receptors in Arabidopsis, rice, and poplar: computational
prediction and in-vivo protein coupling. Genome Biol. 2008;9(7):R120
353.
Jain P, Wadhwa
P, Aygun R, Podila G. Vector-G:
multi-modular SVM-based heterotrimeric G protein prediction. In Silico Biol. 2008;8(2):141-55.
354.
Ferrante M,
Blackwell KT, Migliore M, Ascoli GA. Computational
Models of Neuronal Biophysics and the Characterization of Potential
Neuropharmacological Targets CURRENT
MEDICINAL CHEMISTRY 15 (24): 2456-2471 2008
355.
Strauss LG,
Hoffend J, Koczan D, Pan L, Haberkorn U, Dimitrakopoulou-Strauss A Early effects of FOLFOX treatment of
colorectal tumour in an animal model: assessment of changes in gene expression
and FDG kinetics EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND
MOLECULAR IMAGING 36 (8): 1226-1234 AUG 2009
356.
Gu, Q., Ding,
Y.-S. Improved logitboost classifier
based prediction of GPCR-G-Protein coupling with self-adaptive immune
algorithm 2010, 4th International
Conference on Bioinformatics and Biomedical Engineering, iCBBE 2010 ,
art. no. 5514858
357.
M. Wachira,
James. Sequence and Structural
Elements in the Mechanism of Function of Rhodopsin-Like Family of G
Protein-Coupled-Receptors Recent
Patents on Endocrine, Metabolic & Immune Drug Discovery, Volume 4,
Number 3, November 2010 , pp. 219-229(11)
358.
Suen JY,
Gardiner B, Grimmond S, Fairlie DP (2010) Profiling Gene Expression Induced by Protease-Activated Receptor 2
(PAR2) Activation in Human Kidney Cells. PLoS ONE 5(11): e13809. doi:10.1371/journal.pone.0013809
Bagos PG, Liakopoulos TD, Promponas VJ, Hamodrakas SJ.
Topology
prediction of β-barrel outer membrane proteins. PINSA-B, 2005, Β71
(1): 19-41. (Impact Factor: -, citations: 1)
359.
Mirus O,
Schleiff E. Prediction of beta-barrel membrane proteins by searching for
restricted domains. BMC Bioinformatics 2005, 6:254
Bagos PG, Liakopoulos TD, Hamodrakas SJ. Finding
beta-barrel outer membrane proteins with a Markov chain model. WSEAS
Transactions on Biology and Biomedicine, 2004, 2(1) 186-189. (Impact Factor:
-, citations: 8)
360.
Moslavac S, Mirus O, Bredemeier R, Soll J, von Haeseler AP, Schleiff E. Conserved pore-forming regions in polypeptide-transporting proteins. FEBS Journal. 2005,
272(6): 1367-78.
361.
Moslavac S,
Bredemeier R, Mirus O, Granvogl B, Eichacker LA, Schleiff E. Proteomic
analysis of the Outer Membrane of Anabaena sp. Strain PCC 7120. Journal
of Proteome Research, 2005, 4(4): 1330-8.
362.
Mirus O,
Schleiff E. Prediction of beta-barrel membrane proteins by searching for
restricted domains. BMC Bioinformatics 2005, 6:254
363.
Moslavac S,
Reisinger V, Berg M, Mirus O, Voskya O, Plocher M, Flores E, Eichaker LA,
Schleiff E. The proteome of the heterocyst cell wall in Anabaena sp. PCC
7120. Biol Chem,2007 in press
364.
Sunčana
Moslavac. Outer membrane proteins of
Anabaena sp. strain PCC 7120. 2007, PhD
Thesis, Ludwig-Maximilians-Universität München.
365.
Mubark RI, Keshk HA, Eladawy MI. Different
Species and Proteins Classifiers and Protein's Structure Predictors Systems. INTERNATIONAL
JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING. 2008, 4(2): 119-128
366.
Goudenège, D., Avner, S., Lucchetti-Miganeh, C., Barloy-Hubler, F. CoBaltDB: Complete bacterial and archaeal
orfeomes subcellular localization database and associated resources. 2010
BMC Microbiology 10, art. no. 88
367.
Heinz E, Tischler P, Rattei T, Myers G, Wagner M, Horn M. Comprehensive in silico prediction and
analysis of chlamydial outer membrane proteins reflects evolution and life
style of the Chlamydiae. BMC Genomics. 2009; 10:634.
Spyropoulos IC, Liakopoulos TD, Bagos PG,
Hamodrakas SJ. TMRPres2D - High quality depictions of transmembrane
protein subunits. Bioinformatics, 2004, 20(17)
3258-3260. (Impact
Factor: 4.328, citations: 19)
368.
de Brevern AG, Wong
H, Tournamille C, Colin Y, Le Van Kim C, Etchebest C. A structural model of
a seven-transmembrane helix receptor: the Duffy antigen/receptor for chemokine (DARC). Biochim Biophys Acta. 2005; 1724(3):
288-306.
369.
Cho, S.-H.,
Beckwith, J. Mutations of the Membrane-Bound Disulfide Reductase DsbD That
Block Electron Transfer Steps from Cytoplasm to Periplasm in Escherichia coli. J. Bacteriol. 2006 188:
5066-5076
370.
Stapleton M, Carlson JW, Celniker SE. RNA editing in Drosophila melanogaster: New targets
and functional consequences. RNA.
2006; 12 (11): 1922-1932
371.
Srikar Chamala,
Wesley A. Beckstead, Mark J. Rowe, David McClellan. Evolutionary selective pressure on three mitochondrial SNPs is
consistent with their influence on metabolic efficiency in Pima Indians. Proceedings of Biotechnology and
Bioinformatics Symposium (BIOT-2006)
372.
Tschantz WR,
Pfeifer ND, Meade CL, Wang L, Lanzetti A, Kamath AV, Berlioz-Seux F, Hashim
MF. Expression, purification and
characterization of the human membrane transporter protein OATP2B1 from Sf9
insect cells. Protein Expr Purif.
2007, in press
373.
Battaglino RA,
Pham L, Morse LR, Vokes M, Sharma A, Odgren PR, Yang M, Sasaki H, Stashenko
P. NHA-oc/NHA2: A mitochondrial
cation-proton antiporter selectively expressed in osteoclasts. Bone. 2007
374.
W. Kus JV, Kelly
J, Tessier L, Harvey H, Cvitkovitch DG, Burrows LL. Modification of
Pseudomonas aeruginosa Pa5196 type IV Pilins at multiple sites with D-Araf by
a novel GT-C family Arabinosyltransferase, Tfp J Bacteriol. 2008;190(22):7464-78.
375.
Benjamin
Rietschel, Tabiwang N. Arrey, Bjoern Meyer, Sandra Bornemann, Malte
Schuerken1, Michael Karas, and Ansgar Poetsch Elastase digests: New ammunition for shotgun membrane proteomics Molecular & Cellular Proteomics,
2008
376.
Matthew
Feldhammer, Stéphanie Durand Lenka Mrázová, Renée-Myriam Boucher, Rachel
Laframboise, Robert Steinfeld, James E. Wraith, Helen Michelakakis, Otto P.
van Diggelen, Martin Høebíèek, Stanislav Kmoch, Alexey V. Pshezhetsky. Sanfilippo syndrome type C: mutation
spectrum in the heparan sulfate acetyl-CoA: -glucosaminide
N-acetyltransferase (HGSNAT) gene. Human
Mutation, 2009, in press
377.
Peng Zhou and
Zhicai Shang. 2D molecular graphics: a
flattened world of chemistry and biology. Briefings in Bioinformatics, doi:10.1093/bib/bbp013
378.
Dean S,
Marchetti R, Kirk K, Matthews KR. A
surface transporter family conveys the trypanosome differentiation signal.
Nature. 2009;459(7244):213-7.
379.
Rietschel B,
Arrey TN, Meyer B, Bornemann S, Schuerken M, Karas M, Poetsch A Elastase digests: new ammunition for
shotgun membrane proteomics Mol Cell
Proteomics. 2009;8(5):1029-43.
380.
Hu X. Structure Prediction of Membrane Proteins.
In: Computational Methods for Protein
Structure Prediction and Modeling Volume 2: Structure Prediction. Xu,
Ying; Xu, Dong; Liang, Jie (Eds.). 2007, Springer.
381.
Matthew Feldhammer,
Stéphanie Durand and Alexey V. Pshezhetsky. Protein Misfolding as an Underlying Molecular Defect in
Mucopolysaccharidosis III Type C. PLoS
One. 2009; 4(10): e7434.
382.
Miao, W.-G.,
Song, C.-F., Wang, Y., Wang, J.-S. HpaXm
from Xanthomonas citri subsp. malvacearum is a novel harpin with two heptads
for hypersensitive response 2010, Journal of Microbiology and Biotechnology 20 (1), pp. 1-9
383.
Allen AM, Lexer CL, Hiscock SJ. Characterisation
of sunflower-21 (SF21) genes expressed in pollen and pistil of Senecio
squalidus (Asteraceae) and their relationship with other members of the SF21
gene family. Sexual Plant Reproduction. 2010
384.
Nichols AS, Luetje CW.Transmembrane
segment 3 of Drosophila melanogaster odorant receptor subunit 85b contributes
to ligand-receptor interactions. J
Biol Chem. 2010;285(16):11854-62.
385.
Sangari FJ,
Cayón AM, Seoane A, García-Lobo JM. Brucella
abortus ure2 region contains an acid-activated urea transporter and a nickel
transport system. BMC Microbiol.
2010;10:107.
386.
Xu F, Zeng X,
Haigh RD, Ketley JM, Lin J. Identification and characterization of a
new ferric enterobactin receptor, CfrB, in Campylobacter. J Bacteriol. 2010 Sep;192(17):4425-35.
Epub 2010 Jun 28.
Papasaikas PK, Bagos PG, Litou ZI,
Promponas VJ, Hamodrakas SJ. PRED-GPCR: GPCR recognition and family
classification server. Nucleic Acids Res, 2004, 32(Web Server
Issue):W380-382. (Impact
Factor: 6.878, citations: 28)
387.
Lu F, Li J,
Jiang Z. Computational identification
and analysis of G protein-coupled receptor targets. Drug Development Research. 67(10):
771 – 780
388.
Fang YC, Sun WH,
Wu LC, Huang HD, Juan HF, Horng JT. RINGdb:
an integrated database for G protein-coupled receptors and regulators of G
protein signaling. BMC Genomics. 2006; 7:317.
389.
Jacques Haiech, Jean-Luc Galzi, Marie-Claude Kilhoffer,
Marcel Hibert, Didier Rognan. Why G Protein-coupled Receptors Databases are Needed. In Raimund
Mannhold, Hugo Kubinyi, Gerd Folkers (Eds). Ligand Design for G Protein-coupled
Receptors. 2006 Wiley, 2; 27-38
390.
Jiang Z, Guan C,
Zhou Y. Computational prediction of
the coupling specificity of g protein-coupled receptors. Appl Biochem Biotechnol. 2007;141 (1):109-18.
391.
Guo YZ, Li M, Lu
M, Wen Z, Wang K, Li G, Wu J. Classifying G protein-coupled receptors and
nuclear receptors on the basis of protein power spectrum from fast Fourier
transform. Amino Acids. 2006; 30(4): 397-402.
392.
Guo YZ, Li ML,
Wang KL, Wen ZN, Lu MC, Liu LX, Jiang L. Fast fourier transform-based
support vector machine for prediction of G-protein coupled receptor
subfamilies. Acta Biochim Biophys Sin (Shanghai). 2005; 37(11): 759-66
393.
Choudhari Α, Gangadhar S, Agarwal S. HCRPDB: A Repository and
Mining Tool for the Human Cell Receptor Protein families. International
Conference on Informatika Systems Sciences and Engineering, Turkey,
2005
394.
Gao QB, Wang ZZ.
Classification of G-protein coupled receptors at four levels. Protein
Eng Des Sel. 2006, 19(11):511-516
395.
Greasley PJ,
Jansen FP. G-protein-coupled receptor screening technologies. Drug
Discovery Today: Technologies. 2005; 2 (2): 163-170
396.
Punta M, Forrest
LR, Bigelow H, Kernytsky A, Liu J, Rost B. Membrane protein prediction methods. Methods. 2007; 41(4):
460-74.
397.
Fayyaz M, Khan
A, Mujahid A, Kavokin A. Using multi
level nearest neighbor classifiers for g-protein coupled receptor sub-families
prediction. Lecture Notes in
Computer Science 2007, 4463 LNBI, 564-576.
398.
Davies MN,
Gloriam DE, Secker A, Freitas AA, Mendao M, Timmis J, Flower DR. Proteomic applications of automated GPCR
classification. Proteomics.
2007;7(16):2800-14
399.
Davies MN,
Secker A, Freitas AA, Mendao M, Timmis J, Flower DR. On the hierarchical classification of G Protein-Coupled Receptors.
Bioinformatics, 2007, in press
400.
Yu-Ching Fang. An Integrated Database for G-Protein
Coupled Receptors and Regulators of G-Protein Signaling. PhD Thesis, 2007, Institute of Life Science,
National Central University,
Taiwan
401.
Fayyaz,
Mudassir Mujahid, Adnan Khan, Asifullah Choi, Tae-Sun Iqbal, Nadeem. G-protein Coupled Receptor Subfamilies Prediction Based on Nearest
Neighbor Approach. Proceedings of the 7th IEEE International Conference
on Bioinformatics and Bioengineering,. BIBE 2007: 1348-1354
402.
Juan Carlos Mobarec, Marta Filizola. Advances in
the development and application of computational methodologies for structural
modeling of G-protein-coupled receptors. Expert Opinion on Drug
Discovery 2008, 3(3): 343-35
403.
Khan A, Khan MF,
Choi TS. Proximity based GPCRs prediction
in transform domain. Biochem
Biophys Res Commun. 2008; 371(3):411-5.
404.
Gupta, R.,
Mittal, A., Singh, K. A novel and
efficient technique for identification and classification of GPCRs. IEEE
Transactions on Information Technology in Biomedicine 12 (4), pp. 541-548:
2008
405.
Gao QB, Wu C, Ma
XQ, Lu J, He J. Classification of
amine type G-protein coupled receptors with feature selection. Protein Pept Lett. 2008;15(8):834-42.
406.
Gookin TE, Kim J, Assmann SM. Whole proteome identification of plant candidate
G-protein coupled receptors in Arabidopsis, rice, and poplar: computational
prediction and in-vivo protein coupling. Genome Biol. 2008;9(7):R120.
407.
Davies, M.N.,
Secker, A., Freitas, A.A., Timmis, J., Clark,
E., Flower, D.R. Alignment-independent techniques for protein
classification 2008 Current
Proteomics 5 (4), pp. 217-223
408.
Michalke K, Gravière ME, Huyghe C,
Vincentelli R, Wagner R, Pattus F, Schroeder K, Oschmann J, Rudolph R,
Cambillau C, Desmyter A. Mammalian
G-protein-coupled receptor expression in Escherichia coli: I. High-throughput
large-scale production as inclusion bodies. Anal Biochem. 2009;386(2):147-55.
409.
Matthew N
Davies, Andrew Secker, Mark Halling-Brown, David S Moss, Alex A Freitas, Jon
Timmis, Edward Clark and Darren R Flower. GPCRTree: online hierarchical classification of GPCR function. BMC Research Notes 2008, 1:67
410.
.Qiu JD, Huang
JH, Liang RP, Lu XQ. Prediction of G-protein-coupled receptor
classes based on the concept of Chou's pseudo amino acid composition: an
approach from discrete wavelet transform. Anal Biochem. 2009, 1;390(1):68-73
411.
Li Z, Zhou X,
Dai Z, Zou X. Classification of
G-protein coupled receptors based on support vector machine with maximum
relevance minimum redundancy and genetic algorithm. BMC Bioinformatics.
2010 Jun 16;11:325
412.
Moriyama EN,
Opiyo SO. Bioinformatics of
Seven-Transmembrane Receptors in Plant Genomes. In Yalovsky S, Baluska F,
Jones A (Eds) Integrated G Proteins
Signaling in Plants. pp 251-277
413.
Cobanoglu,
M.C.; Sezerman, U.; Karabulut, N.P. Determinig the ligand-specific regions of peptide-binding G-Protein
Coupled Receptors. 5th
International Symposium on Health Informatics and Bioinformatics (HIBIT),
2010 20-22 April 2010
414.
Tannu Kumari,
Bhaskar Pant and K. R. Pardasani A SVM
Model for AAC Based Classification of Class B GPCRs 6th World Congress of Biomechanics (WCB 2010). August 1-6, 2010 Singapore,
IFMBE Proceedings, 2010, Volume 31, Part 6, 1607-1610, DOI:
10.1007/978-3-642-14515-5_409
Bagos
PG, Liakopoulos TD, Spyropoulos IC, Hamodrakas SJ. PRED-TMBB: A web server
for predicting the topology of β-barrel outer membrane proteins. Nucleic Acids Res, 2004, 32(Web Server
Issue). W400-404.
(Impact Factor: 6.878, citations: 81)
415.
Fariselli P, Martelli PL,
Casadio R. A new decoding algorithm
for hidden Markov models improves the prediction of the topology of all-beta
membrane proteins. BMC Bioinformatics 2005, 6(Suppl 4):S12
416.
Garrow AG, Agnew
A, Westhead DR. TMB-Hunt: An amino
acid composition based method to screen proteomes for beta-barrel
transmembrane proteins. BMC Bioinformatics 2005, 6:56
417.
Gromiha MM, Suwa
M. A simple statistical method for discriminating outer membrane proteins
with better accuracy. Bioinformatics 2005; 21(7):961-968.
418.
Moslavac S,
Mirus O, Bredemeier R, Soll J, von Haeseler AP, Schleiff E. Conserved pore-forming
regions in polypeptide-transporting proteins. FEBS Journal. 2005, 272(6):
1367-78.
419.
Sobolev BN,
Olenina LV,
Kolesanova EF, Poroikov VV, Archakov AI. Computer Design of Vaccines:
Approaches, Software Tools and Informational Resources. Current Computer
- Aided Drug Design, 2005, 1(2): 207-222
420.
Humphries AD,
Streimann IC, Stojanovski D, Johnston AJ, Yano M, Hoogenraad NJ, Ryan MT. Dissection
of the mitochondrial import and assembly pathway for human Tom40. J
Biol Chem. 2005, 280(12): 11535-11543
421.
Thundimadathil
J, Roeske RW, Guo L A synthetic
peptide forms voltage-gated porin-like ion channels in lipid bilayer
membranes. Biochem Biophys Res Commun. 2005; 330(2):
585-590
422.
Thundimadathil
J, Roeske RW, Jiang HY, Guo LL. Aggregation and porin-like channel activity
of a beta sheet peptide. Biochemistry
2005; 44 (30): 10259-10270
423.
Garrow AG, Agnew
A, Westhead DR. TMB-Hunt: a web server to screen sequence sets for
transmembrane ß-barrel proteins. Nucleic Acids Research 2005 33(Web
Server issue):W188-W192
424.
Gromiha MM,
Ahmad S. Suwa M. TMBETA-NET: discrimination and prediction of membrane
spanning ß-strands in outer membrane proteins. Nucleic Acids Research
2005 33(Web Server issue):W164-W167
425.
Letoffe S,
Wecker K, Delepierre M, Delepelaire P, Wandersman C. Activities of the Serratia
marcescens heme receptor HasR and isolated plug and beta-barrel domains: the
beta-barrel forms a heme-specific channel. J Bacteriol.
2005;187(13):4637-45.
426.
Bendtsen JD,
Binnewies TT, Hallin PF, Ussery DW. Genome update: prediction of membrane
proteins in prokaryotic genomes. Microbiology. 2005; 151(Pt
7):2119-21.
427.
Desvaux M, Khan
A, Beatson SA, Scott-Tucker A, Henderson IR. Protein secretion systems in
Fusobacterium nucleatum: genomic identification of Type 4 piliation and
complete Type V pathways brings new insight into mechanisms of pathogenesis.
Biochim Biophys Acta. 2005; 1713 (2): 92-112
428.
Gentle IE, Burri
L, Lithgow T. Molecular architecture and function of the Omp85 family of
proteins. Molecular Microbiology 2005, 58 (5): 1216–1225
429.
Aivaliotis M,
Haase W, Karas M, Tsiotis G. Proteomic analysis of chlorosome-depleted
membranes of the green sulfur bacterium Chlorobium tepidum. Proteomics.
2005; 6(1): 217-232
430.
Berven FS,
Karlsen OA, Straume AH, Flikka K, Murrell JC, Fjellbirkeland A, Lillehaug JR,
Eidhammer I, Jensen HB. Analysing the outer membrane subproteome of
Methylococcus capsulatus (Bath)
using proteomics and novel biocomputing tools. Arch Microbiol.
2006; 184(6): 362-77.
431.
Runke G, Maier
E, Summers WA, Bay DC, Benz R, Court DA. Deletion variants of Neurospora
mitochondrial porin: Electrophysiological and spectroscopic analysis. Biophys
J. 2006; 90:3155-3164.
432.
Marani P, Wagner
S, Baars L, Genevaux P, De Gier JW, Nilsson I, Casadio R, von Heijne G. New
Escherichia coli outer membrane proteins identified through prediction and
experimental verification. Protein Science. 2006, 15(4):884-9
433.
Forrest LR, Tang
CL, Honig B. On the accuracy of homology modeling and sequence alignment
methods applied to membrane proteins. Biophys J. 2006 91(2):508-17.
434.
Pajon R, Yero D,
Lage A, Llanes A, Borroto CJ. Computational identification of beta-barrel
outer-membrane proteins in Mycobacterium tuberculosis predicted proteomes as
putative vaccine candidates. Tuberculosis 86 (3-4): 290-302; 2006
435.
Lee JW, Lee SY,
Song H, Yoo JS. The proteome of Mannheimia succiniciproducens, a
capnophilic rumen bacterium. Proteomics. 2006; 6(12):
3550-3566.
436.
Marczak M, Mazur
A, Krol JE, Gruszecki WI, Skorupska A. Lipoprotein PssN of Rhizobium
leguminosarum bv. trifolii: Subcellular Localization and Possible Involvement
in Exopolysaccharide Export. J Bacteriol. 2006; 188(19):6943-52.
437.
Louvel H,
Bommezzadri S, Zidane N, Boursaux-Eude C,
Creno S, Magnier A, Rouy Z,
Medigue C, Girons IS, Bouchier
C, Picardeau M. Comparative and functional genomic analyses of iron
transport and regulation in Leptospira spp. J Bacteriol. 2006; 188 (22): 7893-7904
438.
Forman S,
Bobrov, AG, Kirillina O, Craig SK, Abney J, Fetherston JD, Perry RD. Identification of critical amino acid
residues in the plague biofilm Hms proteins. Microbiology, 2006; 152
(11):3399-3410
439.
Sadovskaya NS, Sutormin RA, Gelfand MS. Recognition of transmembrane segments in proteins: Review and
consistency-based benchmarking of internet servers. 2006; Journal of Bioinformatics and
Computational Biology 4 (5):
1033-1056
440.
Elofsson A, von
Heijne G. Membrane Protein Structure:
Prediction vs Reality. Annu Rev
Biochem. 2007, 76: 125-140
441.
Punta M, Forrest
LR, Bigelow H, Kernytsky A, Liu J, Rost B. Membrane protein prediction methods. Methods. 2007; 41(4):
460-74.
442.
Aivaliotis M,
Karas M, Tsiotis G. An alternative
strategy for the membrane proteome analysis of the green sulfur bacterium
Chlorobium tepidum using blue native PAGE and 2-D PAGE on purified membranes.
J Proteome Res. 2007; 6(3):1048-58
443.
Dautin N, Barnard TJ, Anderson DE, Bernstein HD. Cleavage of
a bacterial autotransporter by an evolutionarily convergent autocatalytic
mechanism. EMBO J. 2007, 26 (7):
1942-1952
444.
Wally J, Buchanan SK.
A structural comparison of human serum
transferrin and human lactoferrin.2007, BioMetals. 20 (3-4):
249-262
445.
Ge Y, Rikihisa
Y. Surface-exposed Proteins of
Ehrlichia chaffeensis. Infect Immun.
2007 in press
446.
Sijbrandi R, MOLECULAR INSIGHT INTO THE PATHOGENIC
SYNERGY BETWEEN E. COLI AND B. FRAGILIS IN SECONDARY PERITONITIS. PhD Thesis, Vrije Universiteit Amsterdam, 2007
447.
Magalashvili L,
Pechatnikov I, Wexler HM, Nitzan Y. Isolation and characterization of the Omp-PA porin from Porphyromonas
asaccharolytica, determination of the omp-PA gene sequence and prediction of
Omp-PA protein structure. Anaerobe. 2007;13(2):74-82
448.
Madhavi K.
Ganapathiraju. Application of Language
Technologies in Biology: Feature Extraction and Modeling for Transmembrane
Helix Prediction. PhD Thesis, Carnegie Mellon University,
2007
449.
Sundaresh S,
Randall A, Unal B, Petersen JM, Belisle JT, Hartley MG, Duffield M, Titball
RW, Davies DH, Felgner PL, Baldi P. From
protein microarrays to diagnostic antigen discovery: a study of the pathogen
Francisella tularensis. 2007; Bioinformatics,
23(13):i508-18
450.
Wedemeyer U, Peng
G, Michel H, Hartung K. Protein
AQ_1862 from the hyperthermophilic bacterium Aquifex aeolicus is a porin and
contains two conductance pathways of different selectivity. Biophys J. 2007
451.
Sunčana
Moslavac. Outer membrane proteins of
Anabaena sp. strain PCC 7120. 2007, PhD
Thesis, Ludwig-Maximilians-Universität München.
452.
Diao Y, Ma D,
Wen Z, Yin J, Xiang J and M. Li. Using
pseudo amino acid composition to predict transmembrane regions in protein:
cellular automata and Lempel-Ziv complexity. Amino Acids. 2007,
453.
Bigelow H, Rost
B. Online tools for predicting
integral membrane proteins. In: M Peirce & R Wait (Eds.): Proteomic analysis of membrane proteins:
methods and protocols Humana, 2007, in press
454.
Villoutreix BO, Renault N, Lagorce D, Sperandio O,
Montes M, Miteva MA. Free resources to assist structure-based virtual
ligand screening experiments. Curr Protein Pept Sci. 2007; 8 (4):381-411
455.
Ge Y, Rikihisa
Y. Identification of Novel Surface
Proteins of Anaplasma phagocytophilum by Affinity Purification and Proteomics.
2007, Journal of Bacteriology, 189 (21): 7819-7828
456.
Biswas S,
Mohammad MM, Patel DR, Movileanu L, van den Berg B. Structural insight into OprD substrate specificity. Nat Struct Mol Biol. 2007 in press
457.
Randall A, Cheng
J, Sweredoski M, Baldi P. TMBpro:
Secondary Structure, beta-contact, and Tertiary Structure Prediction of
Transmembrane beta-Barrel Proteins. Bioinformatics.
2007
458.
Zhang C, Xiong
Q, Kikuchi T, Rikihisa Y. Identification
of 19 Polymorphic Major Outer Membrane Protein Genes and Their Immunogenic
Peptides in Ehrlichia ewingii for Use in a Serodiagnostic Assay. Clin Vaccine Immunol. 2007
459.
Jeong JA, Ko KM,
Park HS, Lee J, Jang C, Jeon CJ, Koh GY, Kim H. Membrane proteomic analysis of human mesenchymal stromal cells during
adipogenesis. Proteomics. 2007;
7(22):4181-91.
460.
Yan C, Hu J,
Wang Y. Discrimination of outer
membrane proteins with improved performance. BMC Bioinformatics. 2008; 9:47
461.
G Y Liu, P Nie,
J Zhang and N Li. Proteomic analysis
of the sarcosine-insoluble outer membrane fraction of Flavobacterium
columnare. Journal of Fish Diseases
2008
462.
Lee SY, Kim JM,
Song H, Lee JW, Kim TY, Jang YS. From
genome sequence to integrated bioprocess for succinic acid production by
Mannheimia succiniciproducens. Appl
Microbiol Biotechnol. 2008;79(1):11-22.
463.
Jeans C, Singer
SW, Chan CS, Verberkmoes NC, Shah M, Hettich RL, Banfield JF, Thelen MP. Cytochrome 572 is a conspicuous membrane
protein with iron oxidation activity purified directly from a natural
acidophilic microbial community. ISME
J. 2008; 2(5):542-50.
464.
Hu J, Yan C. A method for discovering transmembrane
beta-barrel proteins in Gram-negative bacterial proteomes. Computational Biology and Chemistry 32
(4), pp. 298-301: 2008
465.
Ramakrishnan,
G., Meeker, A., Dragulev, B FslE is necessary for siderophore-mediated
iron acquisition in Francisella tularensis Schu S4, Journal of Bacteriology 190 (15), pp. 5353-5361, 2008
466.
Montgomerie S,
Cruz JA, Shrivastava S, Arndt D, Berjanskii M, Wishart DS. PROTEUS2: a web server for comprehensive
protein structure prediction and structure-based annotation. Nucleic Acids Res. 2008 Jul 1;36(Web
Server issue):W202-9.
467.
Díaz-Mejía JJ,
Babu M, Emili A. Computational and experimental approaches to chart the
Escherichia coli cell-envelope-associated proteome and interactome. FEMS
Microbiol Rev. 2009; 33(1):66-97.
468.
Brosig, A.,
Nesper, J., Boos, W., Welte, W., Diederichs, K. Crystal Structure of a Major Outer Membrane Protein from Thermus
thermophilus HB27 2009 Journal of
Molecular Biology 385 (5), pp.
1445-1455
469.
Rembert Pieper,
Shih-Ting Huang, Jeffrey M. Robinson, David J. Clark, Hamid Alami, Prashanth
P. Parmar, Robert D. Perry, Robert D. Fleischmann and Scott N. Peterson. Temperature and growth phase influence
the outer-membrane proteome and the expression of a type VI secretion system
in Yersinia pestis Microbiology
155 (2009), 498-512
470.
Pedro Celso
Nogueira Teixeira, Cristina Alves Magalhães de Souza, Mônica Santos de
Freitas, Débora Foguel, Ernesto Raul Caffarena and Luiz Anastacio Alves. Predictions Suggesting a Participation of
β-Sheet Configuration in the M2 Domain of the P2X7 Receptor: A Novel
Conformation? Biophysical Journal
Volume 96, Issue 3, 4 February 2009, Pages 951-963
471.
Remmert M, Linke
D, Lupas AN, Soding J. HHomp-prediction
and classification of outer membrane proteins NUCLEIC ACIDS RESEARCH 37: W446-W451 Suppl. S JUL 1 2009
472.
Nugent, T.,
Jones, D.T. Transmembrane protein
topology prediction using support vector machines 2009 BMC Bioinformatics 10, art. no. 159
473.
Lin, M., Zhang, C., Gibson, K., Rikihisa, Y. Analysis of complete genome sequence of
Neorickettsia risticii: Causative agent of Potomac
horse fever 2009 Nucleic Acids Research 37 (18), pp.
6076-6091
474.
Mullins, M.A.,
Register, K.B., Bayles, D.O., Loving, C.L., Nicholson, T.L., Brockmeier, S.L.,
Dyer, D.W., Phillips, G.J. Characterization
and comparative analysis of the genes encoding Haemophilus parasuis outer
membrane proteins P2 and P5 2009 Journal of Bacteriology 191 (19), pp.
5988-6002
475.
Goulart, C.L.,
Lery, L.M.S., Diniz, M.M.P., Vianez-Junior, J.L., Neves-Ferreira, A.G.C.,
Perales, J., Bisch, P.M., Von Krüger, W.M.A. Molecular analysis of VCA1008: A putative phosphoporin of Vibrio
cholerae 2009 FEMS Microbiology
Letters 298 (2), pp. 241-248
476.
Pinne, M.,
Haake, D.A. A comprehensive approach
to identification of surface-exposed, outer membrane-spanning proteins of
Leptospira interrogans 2009 PLoS
ONE 4 (6), art. no. e6071
477.
Heinz E, Tischler P, Rattei T, Myers G, Wagner M, Horn M. Comprehensive in silico prediction and
analysis of chlamydial outer membrane proteins reflects evolution and life
style of the Chlamydiae. BMC Genomics. 2009; 10:634.
478.
Singha UK,
Sharma S, Chaudhuri M. Downregulation
of mitochondrial porin inhibits cell growth and alters respiratory phenotype
in Trypanosoma brucei. Eukaryot
Cell. 2009 Sep;8(9):1418-28. Epub 2009 Jul 17.
479.
Jarosławski S, Duquesne K, Sturgis JN, Scheuring S. High-resolution architecture of the outer
membrane of the Gram-negative bacteria Roseobacter denitrificans. Mol Microbiol. 2009 Dec;74(5):1211-22.
Epub 2009 Oct 15.
480.
Lin M, Zhang C, Gibson K, Rikihisa Y.Analysis of complete genome
sequence of Neorickettsia risticii: causative agent of Potomac
horse fever. Nucleic Acids Res. 2009 Oct;37(18):6076-91. Epub 2009 Aug 6.
481.
Marin R, Díaz M, Alonso R,
Sanz A, Arévalo MA, Garcia-Segura LM. Role of
estrogen receptor alpha in membrane-initiated signaling in neural cells:
interaction with IGF-1 receptor. J Steroid
Biochem Mol Biol. 2009 Mar;114(1-2):2-7. Epub 2009 Jan 9.
482.
Hsu SC, Inoue K. Two evolutionarily conserved essential
beta-barrel proteins in the chloroplast outer envelope membrane. Biosci Trends. 2009 Oct;3(5):168-78.
Review.
483.
Remmert M, Biegert A, Linke D, Lupas AN, Söding J. Evolution of outer membrane beta-barrels
from an ancestral beta beta hairpin. Mol
Biol Evol. 2010 Jun;27(6):1348-58. Epub 2010 Jan 27.
484.
Abu Khweek A,
Fetherston JD, Perry RD.
Analysis of HmsH and its role in
plague biofilm formation. Microbiology.
2010 May;156(Pt 5):1424-38. Epub 2010 Jan 21.
485.
Lenhart TR, Akins DR. Borrelia
burgdorferi locus BB0795 encodes a BamA orthologue required for growth and
efficient localization of outer membrane proteins. Mol Microbiol. 2010 Feb;75(3):692-709. Epub 2009 Dec 16.
486.
Belchik SM, Schaeffer SM, Hasenoehrl S, Xun L. A beta-barrel outer membrane protein facilitates cellular uptake of
polychlorophenols in Cupriavidus necator. Biodegradation. 2010 Jun;21(3):431-9. Epub 2009 Nov 24.
487.
Pieper R, Huang ST, Parmar PP, Clark DJ, Alami H, Fleischmann RD, Perry RD, Peterson SN. Proteomic analysis of iron acquisition,
metabolic and regulatory responses of Yersinia pestis to iron starvation.
BMC Microbiol. 2010 Jan 29;10:30.
488.
Ou YY, Chen SA, Gromiha MM. Prediction of membrane spanning segments and topology in beta-barrel
membrane proteins at better accuracy. J Comput
Chem. 2010 Jan 15;31(1):217-23.
489.
Hay ID, Rehman ZU, Rehm BH. Membrane topology of outer membrane
protein AlgE, which is required for alginate production in Pseudomonas
aeruginosa. Appl Environ Microbiol.
2010 Mar;76(6):1806-12. Epub 2010 Jan 22.
490.
Goudenège, D., Avner, S.,
Lucchetti-Miganeh, C., Barloy-Hubler, F. CoBaltDB:
Complete bacterial and archaeal orfeomes subcellular localization database
and associated resources. 2010 BMC Microbiology 10,
art. no. 88
491.
Baldo L, Desjardins
CA, Russell JA, Stahlhut JK,
Werren JH. Accelerated microevolution
in an outer membrane protein (OMP) of the intracellular bacteria Wolbachia.
BMC Evol Biol. 2010 Feb 17;10:48.
492.
Cox DL, Luthra A, Dunham-Ems S, Desrosiers DC, Salazar JC, Caimano MJ,
Radolf JD. Surface immunolabeling and
consensus computational framework to identify candidate rare outer membrane
proteins of Treponema pallidum. Infect
Immun. 2010 Sep 27. [Epub ahead of print]
493.
Kojima S, Ko KC, Takatsuka Y, Abe N, Kaneko J, Itoh Y, Kamio Y. Cadaverine Covalently-linked to the
Peptidoglycan is Required for the Interaction Between the Peptidoglycan and
Periplasm-exposed SLH Domain of Major Outer Membrane Protein Mep45 in
Selenomonas ruminantium. J
Bacteriol. 2010 Sep 17. [Epub ahead of print]
494.
Sen B, Meeker A, Ramakrishnan G. The
fslE homolog, FTL_0439 (fupA/B), mediates siderophore-dependent iron uptake
in Francisella tularensis LVS. Infect
Immun. 2010 Oct;78(10):4276-85. Epub 2010 Aug 9.
495.
Shu-An Chen,
Yu-Yen Ou and M. Michael Gromiha Topology
Prediction of α-Helical and β-Barrel Transmembrane Proteins Using RBF
Networks Lecture Notes in Computer
Science, 2010, Volume 6215/2010, 642-649
Bagos PG, Liakopoulos TD, Spyropoulos IC,
Hamodrakas SJ. A Hidden Markov Model capable of predicting and
discriminating β-barrel outer membrane proteins. BMC Bioinformatics, 2004,
5:29. (Impact
Factor: 3.781, citations: 63)
496.
A.V.S.K. Mohan Katta, Rajeshwari Marikkannu, Rajiv V. Basaiawmoit, Sankaran Krishnaswamy Consensus based validation of membrane porins. In Silico Biology
2004, 4 (0046)
497.
Henderson NS, Shu Kin So S, Martin C,
Kulkarni R, Thanassi DG. Topology of
the outer membrane usher PapC determined by site-directed fluorescence
labeling. J Biol Chem. 2004; 279(51):53747-54
498.
Garrow AG, Agnew
A, Westhead DR. TMB-Hunt: An amino
acid composition based method to screen proteomes for beta-barrel
transmembrane proteins. BMC
Bioinformatics 2005, 6:56
499.
Gromiha MM, Suwa
M. A simple statistical method for discriminating outer membrane proteins
with better accuracy. Bioinformatics 2005; 21(7):961-968.
500.
Choo KH, Tong
JC, Zhang L. Recent applications of hidden markov models in computational
biology. Genomics Proteomics Bioinformatics. 2004; 2(2):84-96.
501.
Igo MM, Walker
A, Kirkpatrick B, Bisson L. The Xylella fastidiosa cell surface.
The 2004 Pierce's Disease Research Symposium, December 7 - 10, 2004, San Diego, California.
502.
Moslavac S,
Mirus O, Bredemeier R, Soll J, von Haeseler AP, Schleiff E. Conserved
pore-forming regions in polypeptide-transporting proteins. FEBS
Journal. 2005, 272(6): 1367-78.
503.
Rey S, Acab M,
Gardy JL, Laird MR, deFays K, Lambert C, Brinkman FS. PSORTdb: a protein
subcellular localization database for bacteria. Nucleic Acids Res.
2005; 33 Database Issue: D164-8
504.
Moslavac S,
Bredemeier R, Mirus O, Granvogl B, Eichacker LA, Schleiff E. Proteomic
analysis of the Outer Membrane of Anabaena sp. Strain PCC 7120. Journal
of Proteome Research, 2005, 4(4): 1330-8.
505.
Gromiha MM,
Ahmad S. Suwa M. Application of residue distribution along the sequence
for discriminating outer membrane proteins.
Computational Biology and Chemistry, 2005; 29(2):
135-142
506.
Mussi MA, Limansky AS,
Viale AM Acquisition of resistance to carbapenems in multidrug-resistant
clinical strains of Acinetobacter baumannii: Natural Insertional
inactivation of a gene encoding a member of a novel family of beta-barrel
outer membrane proteins. Antimicrobial agents and chemotherapy,
2005, 49(4): 1432-1440
507.
Gromiha MM. Motifs in outer membrane protein
sequences: Applications for discrimination. Biophys Chem. 2005,
117(1):65-71.
508.
Garrow AG, Agnew
A, Westhead DR. TMB-Hunt: a web server to screen sequence sets for transmembrane
ß-barrel proteins. Nucleic Acids Research 2005 33(Web Server
issue):W188-W192
509.
Gromiha MM,
Ahmad S. Suwa M. TMBETA-NET: discrimination and prediction of membrane
spanning ß-strands in outer membrane proteins. Nucleic Acids Research
2005 33(Web Server issue):W164-W167
510.
Desvaux M, Khan
A, Beatson SA, Scott-Tucker A, Henderson IR. Protein secretion systems in
Fusobacterium nucleatum: genomic identification of Type 4 piliation and
complete Type V pathways brings new insight into mechanisms of pathogenesis.
Biochim Biophys Acta. 2005; 1713 (2): 92-112
511.
Lazaridis T. Structural
Determinants of Transmembrane b-barrels. J
Chem Theory Comput. 2005 1(4): 716-722
512.
Park KJ, Gromiha
MM, Horton P, Suwa M. Discrimination of outer membrane proteins using
support vector machines. Bioinformatics. 2005 21(23):4223-9
513.
Mirus O,
Schleiff E. Prediction of beta-barrel membrane proteins by searching for
restricted domains. BMC Bioinformatics 2005, 6:254
514.
Ssu-Hua Huang,
Ru-Sheng Liu, Chien-Yu Chen, Ya-Ting Chao, Shu-Yuan Chen. Prediction of
Outer Membrane Proteins by Support Vector Machines Using Combinations of
Gapped Amino Acid Pair Compositions. Fifth IEEE Symposium on
Bioinformatics and Bioengineering (BIBE'05) pp. 113-120.
515.
Berven FS,
Karlsen OA, Straume AH, Flikka K, Murrell JC, Fjellbirkeland A, Lillehaug JR,
Eidhammer I, Jensen HB. Analysing the outer membrane subproteome of
Methylococcus capsulatus (Bath)
using proteomics and novel biocomputing tools. Arch Microbiol.
2006; 184(6): 362-77.
516.
Gromiha MM, Suwa
M. Discrimination of outer membrane proteins using machine learning
algorithms. Proteins. 2006, 63(4):1031-7.
517.
Yuan Z, Zhang F,
Davis MJ, Boden M, Teasdale RD.
Predicting the solvent accessibility of transmembrane residues from
protein sequence. J Proteome Res. 2006; 5(5): 1063-70.
518.
Bigelow H, Rost
B. PROFtmb: a web server for predicting bacterial transmembrane
beta barrel proteins. Nucleic Acids Res. 2006; 34(Web Server
issue): W186-8.
519.
Gromiha MM, Suwa
M. Influence of amino acid properties for discriminating outer membrane proteins
at better accuracy. Biochim Biophys Acta. 2006. 1764 (9),
1493-1497
520.
Gromiha MM,
Yabuki Y, Kundu S, Suharnan S, Suwa M. TMBETA-GENOME:
database for annotated β-barrel
membrane proteins in genomic sequences. Nucleic Acids Res. 2006,
35(Database issue):D314-6.
521.
Zafer Aydin,
Yucel Altunbasak, Bayesian Protein
Secondary Structure Prediction with Near-Optimal Segmentations, IEEE Transactions on Signal Processing,
2007, 55 (7), Part 1: 3512-3525
522.
Wu Z, Feng E,
Wang Y, Chen L. Discrimination of
outer membrane proteins by a new measure of information discrepancy. Protein and Peptide Letters 14 (1); 37-44
523.
Jiao Y, Newman
DK. The pio Operon Is Essential for
Phototrophic Fe(II) Oxidation in Rhodopseudomonas palustris TIE-1. 2006, J Bacteriology; 189(5): 1765–1773
524.
Punta M, Forrest
LR, Bigelow H, Kernytsky A, Liu J, Rost B. Membrane protein prediction methods. Methods. 2007; 41(4):
460-74.
525.
De Fonzo V, Aluffi-Pentini F, Parisi V. Hidden Markov Models in bioinformatics.
Curr Bioinform 2007; 2(1): 49-61
526.
Garrow AG, Westhead DR. A consensus algorithm to screen genomes
for novel families of transmembrane beta barrel proteins. Proteins. 2007 Jun 7
527.
Moslavac S,
Reisinger V, Berg M, Mirus O, Voskya O, Plocher M, Flores E, Eichaker LA,
Schleiff E. The proteome of the heterocyst cell wall in Anabaena sp. PCC
7120. Biol Chem, in press
528.
Jiao Y, PHYSIOLOGICAL AND
MECHANISTIC STUDIES OF PHOTOTROPHIC FE(II) OXIDATION IN PURPLE NON-SULFUR
BACTERIA. PhD Thesis, California Institute of Technology, 2007
529.
Sapay N, LES
PEPTIDES D’ANCRAGES A L’INTERFACE MEMBRANAIRE, PhD Thesis, UNIVERSITE CLAUDE BERNARD - LYON I, 2006
530.
Sunčana Moslavac. Outer
membrane proteins of Anabaena sp. strain PCC 7120. 2007, PhD Thesis,
Ludwig-Maximilians-Universität München.
531.
Bigelow H, Rost
B. Online tools for predicting
integral membrane proteins. In: M Peirce & R Wait (Eds.): Proteomic analysis of membrane proteins:
methods and protocols Humana, 2007, in press
532.
Martin J, de
Brevern AG, Camproux AC. In silico
local structure approach: A case study on Outer Membrane Proteins. Proteins, 2007, in press
533.
Zou,
Lingyun Wang, Zhengzhi. Predicting Transmembrane Topology of β-barrel Membrane Proteins with A Hidden Markov Model. The 1st International Conference on Bioinformatics
and Biomedical Engineering, ICBBE 2007. pp: 145-148
534.
Gromiha MM. Bioinformatics on β-Barrel Membrane Proteins: Sequence and Structural
Analysis, Discrimination and Prediction. J.C. Rajapakse, B. Schmidt, and
G. Volkert (Eds.): PRIB 2007, LNBI 4774, pp. 148–157, 2007. © Springer-Verlag
Berlin
Heidelberg 2007
535.
Gromiha MM,
Yabuki Y, Suwa M. TMB Finding
Pipeline: Novel Approach for Detecting beta-Barrel Membrane Proteins in
Genomic Sequences. J Chem Inf
Model. 2007, in press
536.
Randall A, Cheng
J, Sweredoski M, Baldi P. TMBpro:
Secondary Structure, beta-contact, and Tertiary Structure Prediction of
Transmembrane beta-Barrel Proteins. Bioinformatics.
2007
537.
Yan C, Hu J,
Wang Y. Discrimination of outer
membrane proteins with improved performance. BMC Bioinformatics. 2008; 9:47
538.
Gromiha MM, Suwa
M. Current developments on beta-barrel
membrane proteins: sequence and structure analysis, discrimination and
prediction. Curr Protein Pept Sci.
2007;8(6):580-99.
539.
Yan,
Changhui Hu, Jing. A Hidden Markov Model Approach to
Identifying HTH Motifs Using Protein Sequence and Predicted Solvent
Accessibility. IEEE Symposium on
Computational Intelligence and Bioinformatics and Computational Biology,
2006. CIBCB '06. 2006
540.
Lin H. The modified Mahalanobis Discriminant for
predicting outer membrane proteins by using Chou's pseudo amino acid
composition. J Theor Biol. 2008
541.
Gromiha MM,
Yabuki Y. Functional discrimination of
membrane proteins using machine learning techniques. BMC Bioinformatics. 2008;9:135
542.
Ou YY, Gromiha
MM, Chen SA, Suwa M. TMBETADISC-RBF: Discrimination of beta-barrel
membrane proteins using RBF networks and PSSM profiles. Comput Biol
Chem. 2008; 32(3):227-31
543.
Zou L, Wang Z,
Wang Y. Prediction of Outer Membrane
Proteins Using Support Vector Machine with Combined Features. 2008; Chinese Journal of Biotechnology 24 (4): 651-658
544.
Thein M, Bunikis
I, Denker K, Larsson C, Cutler S, Drancourt M, Schwan TG, Mentele R,
Lottspeich F, Bergström S, Benz R. Oms38 is the first identified
pore-forming protein in the outer membrane of relapsing fever spirochetes.
J Bacteriol. 2008;190(21):7035-42
545.
Song, H.,
Sandie, R., Wang, Y., Andrade-Navarro, M.A., Niederweis, M. Identification
of outer membrane proteins of Mycobacterium tuberculosis 2008 Tuberculosis
88 (6), pp. 526-544
546.
Pedro Celso
Nogueira Teixeira, Cristina Alves Magalhães de Souza, Mônica Santos de
Freitas, Débora Foguel, Ernesto Raul Caffarena and Luiz Anastacio Alves. Predictions Suggesting a Participation of
β-Sheet Configuration in the M2 Domain of the P2X7 Receptor: A Novel
Conformation? Biophysical Journal
Volume 96, Issue 3, 4 February 2009, Pages 951-963
547.
Teixeira PC, de Souza CA, de Freitas MS, Foguel D,
Caffarena ER, Alves LA. Predictions suggesting a participation of beta-sheet
configuration in the M2 domain of the P2X(7) receptor: a novel conformation? Biophys J.
2009 Feb;96(3):951-63.
548.
M. Michael
Gromiha, Y. Yabuki, K. Imai, P. Horton, and K. Fukui Database Development and Discrimination Algorithms for Membrane
Protein Functions PWASET VOLUME 37 JANUARY 2009 ISSN
2070-3740
549.
Singh P,
Bandyopadhyay P, Bhattacharya S, Krishnamachari A, Sengupta S. Riboswitch detection using profile hidden
Markov models. BMC Bioinformatics.
2009 Oct 8;10:325.
550.
Shu-An Chen,
Yu-Yen Ou and M. Michael Gromiha Topology
Prediction of α-Helical and β-Barrel Transmembrane Proteins Using RBF
Networks Lecture Notes in Computer
Science, 2010, Volume 6215/2010, 642-649
551.
Ayalew S, Confer
AW, Hartson SD, Shrestha B. Immunoproteomic
analyses of outer membrane proteins of Mannheimia haemolytica and
identification of potential vaccine candidates. Proteomics. 2010 Jun;10(11):2151-64.
552.
Ignas Bunikis Borrelia channel-forming proteins: structure and function PhD Thesis, Umea University,
2010
553.
Zou L, Wang Z, Wang Y, Hu F. Combined prediction of transmembrane topology and signal peptide of
beta-barrel proteins: using a hidden Markov model and genetic algorithms.
Comput Biol Med. 2010
Jul;40(7):621-8. Epub 2010 May 21
554.
Ou YY, Chen SA,
Gromiha MM. Classification of
transporters using efficient radial basis function networks with
position-specific scoring matrices and biochemical properties. Proteins. 2010 May 15;78(7):1789-97.
555.
Gao QB, Ye XF,
Jin ZC, He J.Improving discrimination
of outer membrane proteins by fusing different forms of pseudo amino acid
composition. Anal Biochem. 2010
Mar 1;398(1):52-9. Epub 2009 Oct 27.
556.
Yang L, Li Y,
Xiao R, Zeng Y, Xiao J, Tan F, Li M. Using
auto covariance method for functional discrimination of membrane proteins
based on evolution information. Amino
Acids. 2010 May;38(5):1497-503. Epub 2009 Oct 7.
557.
Lenhart TR,
Akins DR. Borrelia burgdorferi locus
BB0795 encodes a BamA orthologue required for growth and efficient
localization of outer membrane proteins. Mol Microbiol. 2010 Feb;75(3):692-709. Epub 2009 Dec 16.
558.
Abu Khweek A,
Fetherston JD, Perry RD.
Analysis of HmsH and its role in
plague biofilm formation. Microbiology.
2010 May;156(Pt 5):1424-38. Epub 2010 Jan 21.
Papasaikas
PK, Bagos PG, Litou ZI, Hamodrakas SJ. A
novel method for GPCR recognition and
family classification, using fingerprints derived from profile Hidden Markov
Models. SAR
QSAR Environ Res, 2003, 14(5-6): 413-420. (Impact Factor: 2.238, citations: 19)
559.
Lu F, Li J,
Jiang Z. Computational identification
and analysis of G protein-coupled receptor targets. Drug Development Research. 2007, 67(10): 771 – 780
560.
Ashton M,
Charlton MH, Schwarz MK, Thomas RJ, Whittaker M. The selection and design of GPCR ligands: From concept
to the clinic. Combinatorial Chemistry and High Throuput Screening 2004, 7 (5): 441-452
561.
Huang ES. Predicting
ligands for orphan GPCRs. Drug Discov Today. 2005, 10(1):
69-73
562.
Guo YZ, Li ML,
Wang KL, Wen ZN, Lu MC, Liu LX, Jiang L. Fast fourier transform-based
support vector machine for prediction of G-protein coupled receptor
subfamilies. Acta Biochim Biophys Sin (Shanghai). 2005; 37(11): 759-66
563.
Holden N,
Freitas AA. Hierarchical classification of G-protein-coupled receptors
with a PSO/ACO algorithm. Proceedings of the 2006 IEEE Swarm Intelligence
Symposium, pp. 77-84.
564.
Huang N, Chen H,
Sun Z. CTKPred: an SVM-based method for the prediction and classification
of the cytokine superfamily. Protein Eng Des Sel. 18(8):
365-8, 2005
565.
Wang YF, Chen H, Zhou YH. Prediction and classification of human G-protein
coupled receptors based on support vector machines. Genomics Proteomics Bioinformatics. 2005; 3
(4), 242-246
566.
Trabanino R. Prediction of structure, function, and
spectroscopic properties of G-protein-coupled receptors: methods and applications.
PhD Thesis, California Institute of
Technology, 2004
567.
Fayyaz M, Khan
A, Mujahid A, Kavokin A. Using multi
level nearest neighbor classifiers for g-protein coupled receptor
sub-families prediction. Lecture
Notes in Computer Science 2007, 4463 LNBI, 564-576.
568.
Eo H-S, Choi JP,
Noh S-J, Hur C-G, Kim W. A combined approach for the classification of G
protein-coupled receptors and its application to detect GPCR splice variants. Computational
Biology and Chemistry 2007. 31
(4): 246-256
569.
Fayyaz,
Mudassir Mujahid, Adnan Khan, Asifullah Choi, Tae-Sun Iqbal, Nadeem. G-protein Coupled Receptor Subfamilies Prediction Based on Nearest
Neighbor Approach. Proceedings of the 7th IEEE International Conference
on Bioinformatics and Bioengineering,. BIBE 2007: 1348-1354
570.
N. Holden and
A.A. Freitas. Hierarchical
classification of protein function with ensembles of rules and particle swarm
optimisation. 2009, Soft Computing 13 (3), pp. 259-272
571.
Holden, N.,
Freitas, A.A. Improving the
performance of hierarchical classification with swarm intelligence.
Lecture Notes in Computer Science, 4973 LNCS, pp. 48-60: 2008
572.
Jingyi Yang Deogun, J. G Protein-Coupled Receptor Classification at the Subfamily Level with
Probabilistic Suffix Tree. IEEE
Symposium on Computational Intelligence and Bioinformatics and Computational
Biology, 2006. CIBCB '06. 2006
573.
Gupta, R.,
Mittal, A., Singh, K., Narang, V., Roy, S. Time-series approach to protein classification problem 2009 IEEE Engineering in Medicine and Biology
Magazine 28 (4), pp. 32-37
574.
Moriyama EN,
Opiyo SO. Bioinformatics of
Seven-Transmembrane Receptors in Plant Genomes. In Yalovsky S, Baluska F,
Jones A (Eds) Integrated G Proteins
Signaling in Plants. pp 251-277
575.
Sonal Shrivastava, K. R. Pardasani, M. M. Malik. SVM Model
for Identification of human GPCRs. JOURNAL OF COMPUTING, VOLUME 2, ISSUE
2, FEBRUARY 2010, ISSN 2151-9617
576.
Peng ZL, Yang
JY, Chen X. An improved classification
of G-protein-coupled receptors using sequence-derived features. BMC Bioinformatics. 2010 Aug 9;11:420.
577.
Li Z, Zhou X,
Dai Z, Zou X. Classification of G-protein coupled receptors based on support
vector machine with maximum relevance minimum redundancy and genetic
algorithm. BMC Bioinformatics. 2010 Jun 16;11:325.
Tsirpanlis G, Bagos P, Ioannou D, Bleta A,
Marinou I, Lagouranis A, Chatzipanagiotou S, Nicolaou C. Serum albumin: a
late reacting negative acute phase protein in clinically evident inflammation in dialysis patients. Nephrol Dial Transplant. 2005, 20:658-659 (Impact
Factor: 3.568, citations: 1)
578.
Baradaran A,
Nasri H. Association of Serum C-Reactive Protein (CRP) with Some
Nutritional Parameters of Maintenance Hemodialysis Patients. Pakistan
Journal of Nutrition 4 (3): 175-182, 2005
Tsirpanlis G, Bagos P, Ioannou D, Bleta A, Marinou I, Lagouranis A, Chatzipanagiotou S, Nicolaou C. The variability and accurate assessment of microinflammation in haemodialysis patients. Nephrol Dial Transplant. 2004, 19(1):
150-157. (Impact
Factor: 3.568, citations: 40)
579.
Libetta C, Sepe V, Zucchi M, Portalupi V, Meloni F,
Rampino T, Canton AD. The effect of sirolimus- or cyclosporine-based
immunosuppression effects on T-cell subsets in vivo. Kidney Int.
2007;72 (1):114-120
580.
Cozzolino M,
Galassi A, Biondi ML, Turri O, Papagni S, Mongelli N, Civita L, Gallieni M,
Brancaccio D. Serum Fetuin-A Levels
Link Inflammation and Cardiovascular Calcification in Hemodialysis Patients.
Am J Nephrol. 2006; 26(5):423-429
581.
Kalantar-Zadeh
K, Balakrishnan VS. The kidney disease wasting: Inflammation, oxidative
stress, and diet-gene interaction. Hemodial Int. 2006; 10(4):
315-25
582.
Fanti P, Asmis
R, Stephenson TJ, Sawaya BP, Franke AA. Positive effect of dietary soy in
ESRD patients with systemic inflammation-correlation between blood levels of
the soy isoflavones and the acute-phase reactants. Nephrol Dial
Transplant. 2006; 21(8): 2239-46.
583.
Stenvinkel P. New
insights on inflammation in chronic kidney disease-genetic and non-genetic
factors. 2006; Nephrologie et Therapeutique 2 (3), 111-119
584.
Racki S,
Zaputovic L, Mavric Z, Vujicic B, Dvornik S. C-reactive Protein Is a
Strong Predictor of Mortality in Hemodialysis Patients. Ren Fail.
2006; 28(5): 427-33.
585.
Caravaca F,
Martin MV, Barroso S, Ruiz B, Hernandez-Gallego R. Do inflammatory markers
add predictive information of death beyond that provided by age and
comorbidity in chronic renal failure patients? Nephrol Dial Transplant.
2006; 21(6): 1575-81.
586.
Biolo G, Amoroso
A, Savoldi S, Bosutti A, Martone M, Pirulli D, Bianco F, Ulivi S, Bertok S,
Artero M, Barazzoni R, Zanetti M, Grassi G, Guarnieri G, Panzetta G. Association
of interferon-gamma +874A polymorphism with reduced long-term inflammatory
response in haemodialysis patients. Nephrol Dial Transplant. 2006;
21(5):1317-22.
587.
Pawlak K, Pawlak
D, Mysliwiec M. Possible association between circulating vascular
endothelial growth factor and oxidative stress markers in hemodialysis
patients. Med Sci Monit. 2006; 12(4):CR181-186
588.
Stenvinkel P. Inflammation
in End-Stage Renal Disease - A Fire that Burns within. Contrib Nephrol.
2005; 149: 185-199.
589.
Stenvinkel P,
Pecoits R, Lindholm B. Gene polymorphism association studies in dialysis:
The nutrition-inflammation axis. Semin Dialysis 18 (4):
322-330, 2005
590.
Teruel JL,
Marcen R, Ocana J, Fernandez-Lucas M, Rivera M, Tabernero G, Ortuno J. Clinical
significance of C-reactive protein in patients on hemodialysis: A
longitudinal study. Nephron Clinical Practice. 100 (4):
C140-C145 2005
591.
Nordfors L,
Lindholm B, Stenvinkel P. End-stage renal disease - not an equal
opportunity disease: the role of genetic polymorphisms. Journal of
Internal Medicine. 258 (1): 1-12, 2005
592.
Johnson DW. Time-integrated
CRP level strongly predicts PD patient outcomes - Nice to know, but what
should we do about it? Peritoneal Dialysis International. 25
(3): 234-237 2005
593.
Kato A,
Takita T, Maruyama Y, Hishida A. Chlamydial infection and progression of carotid atherosclerosis in
patients on regular haemodialysis. Nephrology Dialysis Transplantation 2004, 19(10): 2539-2546
594.
Terrier N,
Senécal L, Dupuy A-M, Jaussent I, Delcourt C, Leray H Rafaelsen S, Bosc J-Y,
Maurice F, Canaud B, Cristol J-P. Association between novel indices of
malnutrition-inflammation complex syndrome and cardiovascular disease in
hemodialysis patients. Hemodialysis International. 9(2):
159
595.
Smith C, Myburgh
KH. Treatment with Sutherlandia frutescens ssp. microphylla alters the
corticosterone response to chronic intermittent immobilization stress in rats.
South African Journal of Science. 2004; 100(3-4): 229-232
596.
Wu Bibo, Zhang
Liming, Hong Ying. Effects of
Levocarnitine on Microinflammatory Status in Maintenance Hemodialysis
Patients. Chinese Journal of
Integrated Traditional and Western Nephrology, 2006 7 (7):398-401
597.
Zhang LM. Wu BB.
Tang Q. Hong Y. Yu Y. Effects of levocarnitine on microinflammation and
oxidative stress status in maintenance hemodialysis patients. 2006; Pharmaceutical
Care and Research 6 (3), 172-175
598.
Wang Qi, Tu
Wei-ping. Micro inflammation and chronic renal failure. Acta Academiae Medicinae Jiangxi.
2006; 46 (6):186-188
599.
Feng Li-ping, Zhang Ling, Zhong Ling. The effect
of vitamin E supplementation on oxidative stress and microinflammation state
in patient with MHD. Chinese Journal of Practical internal
Medicine. 2007; 27 (3):
215-217
600.
Li Min Xia, Bi-Cheng Liu. Angiotensin II and micro-inflammatory
response. INTERNATIONAL JOURNAL OF UROLOGY AND NEPHROLOGY. 2006; 26 (1):139-143
601.
Axelsson . Fat tssue, Adipokines and Clinical
Complications of Chronic Kidney Disease. Phd Thesis, Karolinska Institutet. 2006
602.
Seung Duk Hwang,
A Mechanism of Hemodialysis Vascular
Access Stenosis. The Korean Journal
of Nephrology, 2006, 25(5): 689-693
603.
Dantzer R,
Capuron L, Irwin MR, Miller AH, Ollat H, Hugh Perry V, Rousey S, Yirmiya R. Identification and treatment of symptoms
associated with inflammation in medically ill patients. 2008, Psychoneuroendocrinology 33 (1), pp. 18-29
604.
Bossola M, La
Torre G, Giungi S, Tazza L, Vulpio C, Luciani G. Serum Albumin, Body Weight and Inflammatory Parameters in Chronic
Hemodialysis Patients: A Three-Year Longitudinal Study. Am J Nephrol. 2008;28(3):405-412
605.
Kalantar-Zadeh K,
Anker SD, Horwich TB, Fonarow GC. Nutritional
and anti-inflammatory interventions in chronic heart failure. Am J Cardiol. 2008;101(11A):89E-103E.
606.
Panichi V, Rizza
GM, Paoletti S, Bigazzi R, Aloisi M, Barsotti G, Rindi P, Donati G, Antonelli
A, Panicucci E, Tripepi G, Tetta C, Palla R. Chronic inflammation and mortality in haemodialysis: effect of
different renal replacement therapies. Results
from the RISCAVID study. Nephrol
Dial Transplant. 2008;23(7):2337-43
607.
LaClair R, O'Neal K, Ofner S, Sosa MJ, Labarrere CA,
Moe SM. Precision
of biomarkers to define chronic inflammation in CKD. Am J Nephrol.
2008;28(5):808-12.
608.
Chiu YL, Chen HY, Chuang YF, Hsu SP, Lai CF,
Pai MF, Yang SY, Peng YS. Association of uraemic pruritus with
inflammation and hepatitis infection in haemodialysis patients. Nephrol
Dial Transplant. 2008;23(11):3685-9.
609.
Wetmore JB, Lovett DH, Hung AM, Cook-Wiens
G, Mahnken JD, Sen S, Johansen KL. Associations of interleukin-6,
C-reactive protein and serum amyloid A with mortality in haemodialysis patients.
Nephrology (Carlton).
2008 Sep 25
610.
Lindblad, Y.T.,
Axelsson, J., Bárány, P., Celsi, G.,
Lindholm, B., Qureshi, A.R., Carrea, A., Canepa, A. Hyperinsulinemia and
insulin resistance, early cardiovascular risk factors in children with
chronic kidney disease 2008 Blood Purification 26 (6), pp. 518-525
611.
Chiu, Y.-L.,
Chuang, Y.-F., Fang, K.-C., Liu, S.-K., Chen, H.-Y., Yang, J.-Y., Pai, M.-F.,
(...), Tsai, T.-J. Higher systemic inflammation is associated with poorer
sleep quality in stable haemodialysis patients 2009 Nephrology
Dialysis Transplantation 24 (1), pp. 247-251
612.
Honda H, Ueda M,
Kojima S, Mashiba S, Hirai Y, Hosaka N, Suzuki H, Mukai M, Watanabe M,
Takahashi K, Shishido K, Akizawa T Assessment
of Myeloperoxidase and Oxidative alpha(1)-Antitrypsin in Patients on
Hemodialysis CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY 4 (1):
142-151 JAN 2009
613.
Elshamaa, M.F.,
Sabry, S., Galal, A., Koura, H., Kantoush, N., Rasheed, M., Thabet, E.H. Serum interleukin-10 levels and
microinflammation in vascular access failure in egyptian children on
hemodialysis, 2009 Journal of Clinical and Basic Cardiology
12 (1-4), pp. 18-23
614.
Zhou, W.-X.,
Zheng, W.-B., Huang, X.-M., Zhang, Y., Nie, X.-Z., Li, H.-B., He, D., Xie,
L.-Q. Effects of oxymatrine on
microinflammatory state in patients undergoing continuous hemodialysis: A
randomized controlled trial, 2009, Journal
of Chinese Integrative Medicine 7 (8),
pp. 736-740
615.
Li PK, Cheng YL,
Leung CB, Szeto CC, Chow KM, Kwan BC, Ng ES, Fok QW, Poon YL, Yu AW. Effect of membrane permeability on
inflammation and arterial stiffness: a randomized trial. Clin J Am Soc Nephrol. 2010
Apr;5(4):652-8. Epub 2010 Mar 4.
616.
Mistrík E, Bláha
V, Dusilová-Sulková S, Andrýs C, Kalousová M, Sobotka L. Anti-inflammatory properties of high-density lipoprotein cholesterol
in chronic hemodialysis patients: impact of intervention. J Ren Nutr. 2010 Nov;20(6):368-76.
Epub 2010 Sep 15.
617.
Balaforlu B,
Eskiyoruk I, Kus B, Tozar M, Bekiroglu N, Koc M. Seasonal variation of C-reactive protein and atherosclerotic
cardiovascular events in hemodialysis patients. Ren Fail. 2010;32(7):825-31.
618.
Bonaterra, G.
A.; Zugel, S.; Kinscherf, R. Novel
Systemic Cardiovascular Disease Biomarkers Current Molecular Medicine, Volume 10, Number 2, March 2010 , pp.
180-205(26)
Tsirpanlis G, Bagos P, Ioannou D, Bleta A,
Marinou I, Lagouranis A, Chatzipanagiotou S, Nicolaou C. Exploring
Inflammation in Hemodialysis patients: Persistent and Superimposed Inflammation - a longitudinal study. Kidney Blood Press Res, 2004, 27:63-70. (Impact Factor: 1.268, citations: 18)
619.
Joki N, Hase H, Tanaka Y, Takahashi Y, Saijyo T, Ishikawa H, Inishi Y, Imamura Y, Hara H, Tsunoda T, Nakamura M. Relationship between serum albumin level before initiating haemodialysis and angiographic severity of coronary atherosclerosis in end-stage renal disease patients. Nephrol Dial Transplant. 2006; 21(6): 1633-9.
620.
do Nascimento MM, Stenvinkel P, Riella M, Lindholm B. Serum albumin: a late reacting negative acute phase protein in clinically evident inflammation in dialysis patients. (Author’s Reply) Nephrol
Dial Transplant. 2005, 20: 659-660
621.
Schwedler SB,
Filep JG, Galle
J, Wanner C, Potempa LA.
C-reactive protein: A family of proteins to regulate cardiovascular
function. American Journal of
Kidney Diseases. 2006 47 (2): 212-222
622.
Prasad R. C-Reactive Protein for the Nephrologist.
Nephrology Rounds, 2006, 7(6).
623.
Nasri H. Serum
C-Reactive Protein (CRP) in association with various nutritional parameters
in maintenance hemodialysis patients. Bratisl Lek Lisky; 2005, 106(12):
390-395
624.
Zang Xiao-Dong,
SONG Bao-Li. The effect of huo xue fu shen capsule preparetion on
the state of microinflammation in rat model of CRF. Journal Of
Clinical Nephrology, 2006; 6(3):
625.
Wu Y, Chen T,
Feng SJ, Liu F. Effects of advanced
glycosylation end products on the secretion function of monocyte in different
dialysis-age patients. Journal of
Clinical Rehabilitative Tissue Engineering Research 2007, 11
(21): 4140-4143
626.
Barany P, Muller
HJ. Maintaining control over
haemoglobin levels: optimizing the management of anaemia in chronic kidney
disease. Nephrol Dial Transplant.
2007; 22 Suppl 4:iv10-iv18.
627.
LI Li, WANG
Xiao-yun, LIU Dian-ge, LIU Bi-cheng, GAO Min. An association between microinflammation and arteriovenous fistula
dysfunction in maintenance hemodialysis patients. Chinese Journal of Blood Purification. 2007; 6(10):538-542
628.
Hung A, Pupim L,
Yu C, Shintani A, Siew E, Ayus C, Hakim RM, Ikizler TA. Determinants of C-reactive protein in chronic hemodialysis patients:
Relevance of dialysis catheter utilization. Hemodial Int. 2008; 12(2):236-243.
629.
de Mutsert R,
Grootendorst DC, Axelsson J, Boeschoten EW, Krediet RT, Dekker FW; NECOSAD
Study Group. Excess mortality due to interaction between
protein-energy wasting, inflammation and cardiovascular disease in chronic
dialysis patients. Nephrol Dial Transplant. 2008; 23(9):2957-64.
630.
Shah NR, Dumler
F. Hypoalbuminaemia--a marker of cardiovascular disease in patients with
chronic kidney disease stages II-IV. Int J Med Sci. 2008;5(6):366-70
631.
de Mutsert, R.,
Grootendorst, D.C., Indemans, F., Boeschoten, E.W., Krediet, R.T., Dekker,
F.W. Association Between Serum Albumin
and Mortality in Dialysis Patients Is Partly Explained by Inflammation, and
Not by Malnutrition 2009 Journal of
Renal Nutrition 19 (2), pp.
127-135
632.
Liu BC, Li L,
Gao M, Wang YL, Yu JR Microinflammation
is involved in the dysfunction of arteriovenous fistula in patients with
maintenance hemodialysis CHINESE
MEDICAL JOURNAL 121 (21):
2157-2161 5 2008
633.
Amir Hayat,
Dhiren Haria, Moro O Salifu. Erythropoietin
stimulating agents in the management of anemia of chronic kidney disease.
Patient Preference and Adherence
2008:2 195–200
634.
Elshamaa, M.F.,
Sabry, S., Galal, A., Koura, H., Kantoush, N., Rasheed, M., Thabet, E.H. Serum interleukin-10 levels and
microinflammation in vascular access failure in egyptian children on hemodialysis,
2009 Journal of Clinical and Basic Cardiology 12 (1-4), pp. 18-23
635.
Simic-Ogrizovic,
S., Dopsaj, V., Bogavac-Stanojevic, N., Obradovic, I.,
Stosovic, M., Radovic, M. Serum
amyloid-A rather than C-reactive protein is a better predictor of mortality
in hemodialysis patients, 2009 , Tohoku
Journal of Experimental Medicine 219
(2), pp. 121-127
636.
Balaforlu B,
Eskiyoruk I, Kus B, Tozar M, Bekiroglu N, Koc M. Seasonal variation of C-reactive protein and atherosclerotic
cardiovascular events in hemodialysis patients. Ren Fail. 2010;32(7):825-31.
Tsirpanlis G, Chatzipanagiotou S, Ioannidis A,
Ifanti K, Bagos P, Lagouranis A, Poulopoulou C, Nicolaou C. The
effect of viable Chlamydia pneumoniae on serum cytokines and adhesion
molecules in hemodialysis patients. Kidney Int Suppl. 2003, 84:
S72-5. (Impact Factor: 6.418, citations: 6)
637.
Jacek Rysz, Ewa Majewska, Robert A. Stolarek, Maciej Banach, Aleksandra Cialstrokkowska-Rysz, Zbigniew Baj. Increased Levels of Soluble TNF-alpha
Receptors and Cellular Adhesion Molecules in Patients Undergoing
Bioincompatible Hemodialysis. American Journal of Nephrology 26 (5): 437-444
638.
Sessa R. Chlamlydia
pneumoniae as risk factor of cardiovascular disease in dialysis patients. Int
J Artif Organs 2005; 28: 3 – 7
639.
Wu LP, Chen LH,
Zhang JS, Sun L, Zhang YQ. Protective effect of rhIL-1beta on pancreatic
islets of alloxan-induced diabetic rats. World J Gastroenterol. 2004;
10(22): 3353-3355.
640.
Al Aly Z, Edwards JC. Vascular biology in uremia: insights into novel
mechanisms of vascular injury. Adv
Chronic Kidney Dis. 2004; 11(3): 310-8.
641.
Varagunam M,
Finney H, Trevitt R, Sharples E, McCloskey DJ, Sinnott PJ, Raftery MJ, Yaqoob
MM. Pretransplantation levels of C-reactive protein predict all-cause and
cardiovascular mortality, but not graft outcome, in kidney transplant
recipients. Am J Kidney Dis. 2004; 43(3): 502-7.
642.
Zhou Tong, Sun
Guizhi, Xiao Li, Kai-Yin Wu, Zhang Dongqing, Yu-Ying Chen, Hu Chen Nan.
Relationship between adhesion molecules and dendritic cells in the
tubulointerstitial lesions of IgA nephropathy. 2006; Chinese Journal of Nephrology Dialysis and Transplantation; 2004 13 (6): 530-533
Petsalakis ΕΙ, Bagos PG, Litou ΖΙ, Hamodrakas SJ. N-terminal sequence-based prediction
of subcellular location. BioSysBio: Bioinformatics and Systems
Biology Conference. Edinburgh, UK.BMC Bioinformatics 2005, 6(Suppl 3):S11. (1 citation)
643.
Vicentini R,
Menossi M. TISs-ST: a web server to
evaluate polymorphic translation initiation sites and their reflections on
the secretory targets. BMC
Bioinformatics 2007, 8:160
Bagos PG,
Liakopoulos TD, Hamodrakas SJ. Faster
Gradient Descent Training of Hidden Markov Models, Using Individual Learning
Rate Adaptation. Proceedings of
ICGI 2004 Lecture Notes In Artificial Intelligence, Vol. 3264, pp. 40-52.
(Impact Factor: 0.515, citations: 3)
644.
Yan Y, Guo B. Application
of wavelet neural network (WNN) and gradient descent method (GDM) in natural
image denoising. 2006; Journal of Computational Information Systems
2 (2): 625-631
645.
Yunyi Yan,
Baolong Guo, Wei Ni. Image Denoising:
An Approach Based on Wavelet Neural Network and Improved Median Filtering.
Proceedings of the 6th World Congress
on Intelligent Control and Automation, June 21 - 23, 2006, Dalian, China
646.
Andersson R,
Bruder CE, Piotrowski A, Menzel U, Nord H, Sandgren J, Hvidsten TR, de Ståhl
TD, Dumanski JP, Komorowski J. A
Segmental Maximum A Posteriori Approach to Genome-wide Copy Number Profiling.
Bioinformatics, 2008, in press
|